版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码61页/总NUMPAGES总页数61页2022-2023学年海南省文昌市中考数学专项突破仿真模拟试题(一模)一、选一选:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣2.下列图形是轴对称图形的是()A.B.C.D.3.如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A.120° B.60° C.45° D.30°4.如图所示的几何体的主视图是()A. B. C. D.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a-3 B.2a+3 C.2(a-3) D.2(a+3)6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128000000000000次定点运算,将数128000000000000用科学记数法表示为()A.1.281014 B.1.2810-14 C.1281012 D.0.12810117.下列计算正确的是()A. B. C. D.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和69.已知关于x一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D.或10.若,则x,y的值为()A. B. C. D.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A.3 B. C. D.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A B. C. D.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:-3__________0.(填“<”“=”“>”)14因式分解:__________.15.某学习小组共有学生5人,在数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为__________分.16.如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________18.将从1开始连续自然数按如图规律排列:规于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)按此规律,自然数2018记为__________三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.计算:20.解没有等式,并把它的解集在数轴上表示出来.21.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行统计,并绘制成如下统计图表:请根据图表中所给信息,解答下列问题:(1)在这次中共随机抽取了名学生,图表中的m=,n=;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次的基础上,进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:,,结果到0.1小时)24.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;(3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.26.如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C,(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使∠ABE=∠ACB?若存在,求出满足条件的所有点E的坐标;若没有存在,请说明理由.2022-2023学年海南省文昌市中考数学专项突破仿真模拟试题(一模)一、选一选:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣【正确答案】B【详解】分析:只有符号没有同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选B.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列图形是轴对称图形的是()A.B.C.D.【正确答案】A【详解】试题分析:根据轴对称图形的定义,A是轴对称图形,B、C既没有是轴对称图形也没有是对称图形,D是对称图形.故选A.考点:轴对称图形和图形的判断和区分.3.如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A.120° B.60° C.45° D.30°【正确答案】B【详解】分析:根据平行线的性质可得解.详解:∵a//b∴∠1=∠2又∵∠1=60°,∴∠2=60°故选B.点睛:两条平行线被第三条直线所截,同位角相等.4.如图所示的几何体的主视图是()A. B. C. D.【正确答案】C【分析】根据主视图是从几何体正面看得到的即可得出答案.【详解】如图所示的几何体是圆锥,圆锥体的主视图是等腰三角形,故选C.本题主要考查简单几何体三视图,解题的关键是掌握常见几何体的三视图.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a-3 B.2a+3 C.2(a-3) D.2(a+3)【正确答案】B【详解】分析:a的2倍与3的和也就是用a乘2再加上3,列出代数式即可.详解:“a2倍与3的和”是2a+3.故选B.点睛:此题考查列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,注意字母和数字相乘的简写方法.6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128000000000000次定点运算,将数128000000000000用科学记数法表示为()A.1.281014 B.1.2810-14 C.1281012 D.0.1281011【正确答案】A【详解】分析:由于128000000000000共有15位数,所以用科学记数法表示时n=15-1=14,再根据科学记数法的定义进行解答即可.详解:∵128000000000000共有15位数,∴n=15-1=14,∴这个数用科学记数法表示是1.281014.故选A.点睛:本题考查的是科学记数法的定义,把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.7.下列计算正确的是()A. B. C. D.【正确答案】C【详解】分析:根据合并同类项法则;单项式乘以单项式;幂的乘方等计算法则,对各选项分析判断后利用排除法求解.详解:A、应为2x-x=x,故本选项错误;B、应为x(-x)=-x2,故本选项错误;C、,故本选项正确;D、与x没有是同类项,故该选项错误.故选C.点睛:本题考查了合并同类项法则,单项式乘以单项式;幂的乘方等计算法则,熟练掌握运算性质和法则是解题的关键.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和6【正确答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数至多的数为这组数据的众数.【详解】解:将这组数据按从小到大排列为:5,5,5,6,7,7,10,∵数据5出现3次,次数至多,∴众数为5;∵第四个数为6,∴中位数为6,故选:D本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数至多的数据,注意众数可以没有止一个.9.已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D.或【正确答案】A【分析】根据方程有两个相等的实数根根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=.故选A.本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.10.若,则x,y的值为()A. B. C. D.【正确答案】D【详解】分析:先根据非负数的性质列出关于x、y的二元方程组,再利用加减消元法求出x的值,利用代入消元法求出y的值即可.详解:∵,∴将方程组变形为,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为.故选D.点睛:本题考查的是解二元方程组,熟知解二元方程组的加减消元法和代入消元法是解答此题的关键.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A.3 B. C. D.【正确答案】C【分析】连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.【详解】连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=∴FE=.故选C.本题考查了旋转的性质:对应点到旋转的距离相等;对应点与旋转所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A. B. C. D.【正确答案】B【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出,设PA=x,则NA=PN-PA=3-x,设PB=y,代入整理得到,根据二次函数的性质以及≤x≤3,求出y的与最小值,进而求出b的取值范围.【详解】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.
在△PAB与△NCA中,
,
∴△PAB∽△NCA,
∴,
设PA=x,则NA=PN-PA=3-x,设PB=y,
∴,
∴,
∵-1<0,≤x≤3,
∴x=时,y有值,此时b=1-=-,
x=3时,y有最小值0,此时b=1,
∴b的取值范围是-≤b≤1.
故选:B.本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:-3__________0.(填“<”“=”“>”)【正确答案】<【详解】分析:根据负数都小于0得出即可.详解:-3<0.故答案为<.点睛:本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,难度没有大.14.因式分解:__________.【正确答案】【详解】解:=;故答案为15.某学习小组共有学生5人,在数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为__________分.【正确答案】84【分析】可直接运用平均数的计算方法求平均数即可得.【详解】解:这组数据的平均数=(分).故答案为84.题目主要考查数据的平均数的计算方法,正确理解平均数的概念是解题的关键.16.如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【正确答案】3【分析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.【详解】解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∵∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为3.本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________【正确答案】【详解】分析:过E作EF⊥x轴,垂足为F,则EF=1,易求∠DEF=30°,从而DF=,根据ΔODE的面积是求出OD=,从而OF=3,所以k=3.详解:如图,过点E作EF⊥x轴,垂足为点F,∵点E的纵坐标为1,∴EF=1,∵ΔODE的面积是,∴OD=,∵四边形OABC是矩形,且∠AOD=30°,∴∠DEF=30°,∴DF=∴OF=3,所以点E的坐标为(3,1),把点E的坐标代入反比例函数的解析式,可得k=3.故答案为3.点睛:本题是正方形和反比例函数的综合试题,解题过程中涉及解直角三角形,确定反比例函数的解析式等,确定点E的坐标是解题关键.18.将从1开始的连续自然数按如图规律排列:规于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)按此规律,自然数2018记为__________【正确答案】(505,2)【详解】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2.∴2018在第505行,第2列,∴自然数2018记(505,2).故答案为(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.计算:【正确答案】1【详解】分析:根据算术平方根、零指数幂、负整数指数幂和cos45°=得到原式=,然后进行乘法运算后合并即可.详解:原式=,==1.点睛:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了零指数幂、负整数指数幂以及角的三角函数值.20.解没有等式,并把它的解集在数轴上表示出来.【正确答案】x<2,图见解析.【详解】分析:先去分母,再去括号,移项,合并同类项,把x的系数化为1,并在数轴上表示出来即可.详解:去分母得,5x-1<3(x+1),去括号得,5x-1<3x+3,移项得,5x-3x<3+1,合并同类项得,2x<4,把x的系数化为1得,x<2.在数轴上表示为:.点睛:本题考查的是解一元没有等式,熟知没有等式的基本性质是解答此题的关键.21.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【正确答案】(1)证明见解析;(2)37°【详解】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.解析:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°∴∠F=∠ACB=37°点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA没有能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次中共随机抽取了名学生,图表中的m=,n=;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次的基础上,进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【正确答案】(1)40名;;;(2)90人;(3).【详解】分析:(1)根据组的频数和频率求出总人数,再利用第三组的人数求出n的值,第四组的频率求出m的值;(2)先求出样本中生活支出低于350元的学生的比例,再估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)先画树状图得出所有等可能的情况数,找到抽取的两名学生都是女生的情况数,计算概率即可.详解:(1)的总人数为4÷0.1=40,n=16÷40=0.40,m=40×0.30=12;(2)(人);(3)画树状图如下:共有6种等可能结果数,其中全为女生的有2种情况,∴恰好抽到A、B两名女生概率.点睛:本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意古典概型概率公式、列举法的合理运用.23.如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:,,结果到0.1小时)【正确答案】1.0小时.【详解】分析:延长AB交南北轴于点D,则AB⊥CD于点D,通过解直角三角形BDC和ADC,求出BD、CD和AD的长,继而求出AB的长,从而可以解决问题.详解:如图,因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D.∵∠BCD=45°,BD⊥CD,∴BD=CD.在Rt△BDC中,∵cos∠BCD=,BC=60海里,即cos45°=,解得CD=海里,∴BD=CD=海里.在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里,∵AB=AD-BD,∴AB=-=30()海里.∵海监船A的航行速度为30海里/小时,则渔船在B处需要等待的时间为==≈2.45-1.41=1.04≈1.0小时,∴渔船B处需要等待约1.0小时.点睛:此题考查了方向角问题.此题难度适中,解题的关键是利用方向角构造直角三角形,然后解直角三角形,注意数形思想的应用.24.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【正确答案】(1)60天;(2)24天.【详解】分析:(1)设二号施工队单独施工需要x天,根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天,依题可得解得x=60,经检验,x=60是原分式方程的解,∴由二号施工队单独施工,完成整个工期需要60天.(2)由题可得(天),∴若由一、二号施工队同时进场施工,完成整个工程需要24天.点睛:本题考查了列分式方程解应用题,灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.25.如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;(3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.【正确答案】(1)证明见解析;(2)30°;(3)【详解】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;(3)过点D作DG⊥AB,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO中,求出AO的长,得CF的长,再求DG的长,运用勾股定理易求CD的长.详解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC.(2)如图,连接AO并延长交BC于I交⊙O于J∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,∴BI=IC,∵AC=BC,∴IC=AC,∴∠IAC=30°,∴∠ABC=60°=∠F=∠ACB.∵FC是直径,∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°.(3)过点D作,连接AO由(1)(2)知ABC为等边三角形∵∠ACF=30°,∴,∴AE=BE,∴,∴AB=,∴.在RtΔAEO中,设EO=x,则AO=2x,∴,∴,∴x=6,⊙O的半径为6,∴CF=12.∵,∴DG=2.如图,过点D作,连接OD.∵,,∴CF//DG,∴四边形G′DGE为矩形,∴,,在RtΔ中,,∴,∴点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.26.如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C,(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使∠ABE=∠ACB?若存在,求出满足条件的所有点E的坐标;若没有存在,请说明理由.【正确答案】(1)y=-2x2-4x+6;(2)M(-1,);(3)E1(-2,6),E2(-4,-10).【详解】分析:(1)根据抛物线过A、B两点,待定系数法求解可得;;(2)由(1)知抛物线对称轴为直线x=-1,设H为AC的中点,求出直线AC的垂直平分线的解析式即可得解;(3)①过点A作交y轴于点F,交CB的延长线于点D,证明ΔAOF∽ΔCOA,求得,分别求出直线AF、BC的解析式的交点,求出,根据∠ABE=∠ACB求出∠ABE=2,易求E点坐标.详解:(1)把A(-3,0)、B(1,0)代入y=ax2+bx+6得,,解得∴y=-2x2-4x+6,令x=0,则y=6,∴C(0,6);(2)=-2(x+1)2+8,∴抛物线的对称轴为直线x=-1.设H为线段AC的中点,故H(,3).设直线AC的解析式为:y=kx+m,则有,解得,,∴y=2x+6设过H点与AC垂直的直线解析式为:,∴∴b=∴∴当x=-1时,y=∴M(-1,)(3)①过点A作交y轴于点F,交CB的延长线于点D∵∠ACO+∠=90°,∠DAO+∠=90°∴∠DAO=∠ACO∵∠ACO=∠ACO∴ΔAOF∽ΔCOA∴∴∵OA=3,OC=6∴∴直线AF的解析式为:直线BC的解析式为:∴,解得∴∴∴∠ACB=∵∠ABE=∠ACB∴∠ABE=2过点A作轴,连接BM交抛物线于点E∵AB=4,∠ABE=2∴AM=8∴M(-3,8)直线BM的解析式为:∴,解得∴y=6∴E(-2,6)②当点E在x轴下方时,过点E作,连接BE,设点E∴∠ABE=2∴m=-4或m=1(舍去)可得E(-4,-10)综上所述E1(-2,6),E2(-4,-10)点睛:本题主要考查二次函数与轴对称、相似三角形的性质,根据题意灵活运用所需知识点是解题的关键.2022-2023学年海南省文昌市中考数学专项突破仿真模拟试题(二模)一、选一选(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.﹣的相反数是()A.﹣ B. C.﹣ D.2.今年一季度,河南省对“”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×10113.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在对的面上的汉字是()A.厉 B.害 C.了 D.我4.下列运算正确的是()A.(﹣x2)3=﹣x5 B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=15.河南省旅游资源丰富,2013~2017年旅游收入没有断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.《九章算术》中记载:“今有共买羊,人出五,没有足四十五;人出七,没有足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A. B. C. D.7.下列一元二次方程中,有两个没有相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A. B. C. D.9.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.如图1,点F从菱形ABCD顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.计算:|﹣5|﹣=_____.12.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为_____.13.没有等式组最小整数解是_____.14.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为_____.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为_____.三、计算题(本大题共8题,共75分,请认真读题)16.先化简,再求值:,其中.17.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机了部分市民(问卷表如表所示),并根据结果绘制了如下尚没有完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”人数.18.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(没有写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.某公司推出一款产品,经市场发现,该产品的日量y(个)与单价x(元)之间满足函数关系.关于单价,日量,日利润的几组对应值如下表:单价x(元)8595105115日量y(个)17512575m日利润w(元)87518751875875(注:日利润=日量×(单价﹣成本单价))(1)求y关于x的函数解析式(没有要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当单价x=元时,日利润w,值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的中,日量与单价仍存在(1)中的关系.若想实现单价为90元时,日利润没有低于3750元的目标,该产品的成本单价应没有超过多少元?22.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5点B,C.(1)求抛物线解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(没有与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.2022-2023学年海南省文昌市中考数学专项突破仿真模拟试题(二模)一、选一选(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.﹣的相反数是()A.﹣ B. C.﹣ D.【正确答案】B【详解】分析:直接利用相反数的定义分析得出答案.详解:-的相反数是:.故选B.点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.2.今年一季度,河南省对“”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011【正确答案】C【详解】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.详解:214.7亿,用科学记数法表示为2.147×1010,故选C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在对的面上的汉字是()A.厉 B.害 C.了 D.我【正确答案】D【详解】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.下列运算正确的是()A.(﹣x2)3=﹣x5 B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1【正确答案】C【详解】分析:分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.详解:A、(-x2)3=-x6,此选项错误;B、x2、x3没有是同类项,没有能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选C.点睛:本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.河南省旅游资源丰富,2013~2017年旅游收入没有断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【正确答案】B【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据没有完全相同,∴方差没有可能为零,故此选项错误.故选B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.《九章算术》中记载:“今有共买羊,人出五,没有足四十五;人出七,没有足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A. B. C. D.【正确答案】A【详解】分析:设合伙人数为x人,羊价为y钱,根据羊的价格没有变列出方程组.详解:设合伙人数为x人,羊价为y钱,根据题意,可列方程组为:.故选A.点睛:本题考查了由实际问题抽象出二元方程组,找准等量关系是解题的关键.7.下列一元二次方程中,有两个没有相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【正确答案】B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个没有相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个没有相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.8.现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A. B. C. D.【正确答案】D【详解】分析:直接利用树状图法列举出所有可能进而求出概率.详解:令3张用A1,A2,A3,表示,用B表示,画树状图为:,一共有12种可能的情况,其中两张卡片正面图案相同的有6种情况,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选D.点睛:此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【正确答案】A【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=-1,可得G(-1,2).【详解】如图,过点A作AH⊥x轴于H,AG与y轴交于点M,∵▱AOBC的顶点O(0,0),A(-1,2),∴AH=2,HO=1,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴MG=-1,∴G(-1,2),故选A.本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.2【正确答案】C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a∴DE•AD=a.∴DE=2.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2.解得a=.故选C.本题综合考查了菱形性质和函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.计算:|﹣5|﹣=_____.【正确答案】2【详解】分析:直接利用二次根式以及值的性质分别化简得出答案.详解:原式=5-3=2.故答案为2.点睛:此题主要考查了实数运算,正确化简各数是解题关键.12.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为_____.【正确答案】140°##140度
【分析】直接利用垂直的定义邻补角的定义分析得出答案.【详解】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°-40°=140°.故答案为140°.此题主要考查了垂直的定义、邻补角的定义,正确把握相关定义是解题关键.13.没有等式组的最小整数解是_____.【正确答案】-2【详解】分析:先求出每个没有等式的解集,再求出没有等式组的解集,即可得出答案.详解:.∵解没有等式①得:x>-3,解没有等式②得:x≤1,∴没有等式组的解集为-3<x≤1,∴没有等式组的最小整数解是-2,故答案为-2.点睛:本题考查了解一元没有等式组和没有等式组的整数解,能根据没有等式的解集得出没有等式组的解集是解此题的关键.14.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为_____.【正确答案】【分析】连接DB、DB′,先利用勾股定理求出DB′=,A′B′=,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.【详解】△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则DB′=,A′B′=,∴S阴=.故答案为.本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为_____.【正确答案】或4【详解】分析:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=;②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;.综上所述,AB的长为4或4;故答案为4或4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.先化简,再求值:,其中.【正确答案】原式=x-1=【详解】分析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x-1,然后再把x的值代入x-1计算即可.详解:原式===x-1;当x=时,原式=-1=.点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机了部分市民(问卷表如表所示),并根据结果绘制了如下尚没有完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【正确答案】(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【详解】解:(1)本次接受的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从没有同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(没有写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【正确答案】(1);(2)作图见解析.【详解】分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.【正确答案】(1)证明见解析;(2)①30°;②22.5°.【详解】分析:(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.详解:(1)证明:连接OC,如图,.∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.点睛:本题考查了切线的性质:圆的切线垂直于切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【正确答案】高、低杠间的水平距离CH的长为151cm.【详解】分析:利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.详解:在Rt△ACE中,∵tan∠CAE=,∴AE=在Rt△DBF中,∵tan∠DBF=,∴BF=.∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151(cm).答:高、低杠间的水平距离CH的长为151cm.点睛:本题考查了锐角三角函数解直角三角形.题目难度没有大,注意度.21.某公司推出一款产品,经市场发现,该产品的日量y(个)与单价x(元)之间满足函数关系.关于单价,日量,日利润的几组对应值如下表:单价x(元)8595105115日量y(个)17512575m日利润w(元)87518751875875(注:日利润=日量×(单价﹣成本单价))(1)求y关于x的函数解析式(没有要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当单价x=元时,日利润w,值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的中,日量与单价仍存在(1)中的关系.若想实现单价为90元时,日利润没有低于3750元的目标,该产品的成本单价应没有超过多少元?【正确答案】(1)25;(2)80,100,2000;(3)该产品的成本单价应没有超过65元.【详解】分析:(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的值;(3)根据题意可以列出相应的没有等式,从而可以取得科技创新后的成本.详解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85-a),得a=80,w=(-5x+600)(x-80)=-5x2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w取得值,此时w=2000,(3)设科技创新后成本为b元,当x=90时,(-5×90+600)(90-b)≥3750,解得,b≤65,答:该产品的成本单价应没有超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、没有等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形的思想解答.22.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【正确答案】(1)①1;②40°;(2),90°;(3)AC的长为3或2.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 14《天文学上的旷世之争》说课稿 2023-2024学年统编版高中语文选择性必修下册
- 2025年度智能云计算平台运维服务合同2篇
- 2025年度新能源出租车司机劳动合同规范范本2篇
- 福建省南平市太平中学高一化学模拟试题含解析
- 福建省南平市松溪县第二中学高一地理模拟试题含解析
- 2024年版:广告发布合同广告内容审核与责任分配
- 2024版二手房租赁买卖合同范本
- 农场年度荣耀
- 2025版智能家居配套大平方楼房买卖合同3篇
- 大V账号推广合同(2篇)
- 科研伦理与学术规范期末考试试题
- 2024年秋季人教版新教材七年级上册语文全册教案(名师教学设计简案)
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 2025届湖南省长沙市青竹湖湘一外国语学校七年级数学第一学期期末经典试题含解析
- 2024中国食药同源大健康产业消费洞察与产业发展分析白皮书
- 邮政银行借款合同
- 2024届广州市番禺区重点名校中考数学全真模拟试题含解析
- 2024春期国开电大专科《中国古代文化常识》在线形考(形考任务一至四)试题及答案
- 出现产品质量问题退换货承诺
- GB/T 17937-2024电工用铝包钢线
- 合伙开托管班协议书4篇
评论
0/150
提交评论