2023届浙江杭州余杭区九年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2023届浙江杭州余杭区九年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2023届浙江杭州余杭区九年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2023届浙江杭州余杭区九年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2023届浙江杭州余杭区九年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在中,,垂足为,,若,则的长为()A. B. C.5 D.2.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A.50° B.60° C.100° D.120°3.方程组的解的个数为()A.1 B.2 C.3 D.44.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.5.已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>16.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',以下说法中错误的是(

)A.△ABC∽△A'B'C' B.点C、点O、点C'三点在同一直线上 C.AO:AA'=1∶2 D.AB∥A'B'7.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是AM、MC的中点,则EF的长随着M点的运动()A.不变 B.变长 C.变短 D.先变短再变长8.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.119.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转得到月牙②,则点A的对应点A’的坐标为()A.(2,2) B.(2,4) C.(4,2) D.(1,2)10.如图,在平面直角坐标系中,在轴上,,点的坐标为,绕点逆时针旋转,得到,若点的对应点恰好落在反比例函数的图像上,则的值为()A.4. B.3.5 C.3. D.2.511.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°12.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.cm B.8cm C.6cm D.4cm二、填空题(每题4分,共24分)13.已知三个边长分别为2,3,5的正方形如图排列,则图中阴影部分的面积为_____.14.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.15.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.16.的半径为4,圆心到直线的距离为2,则直线与的位置关系是______.17.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.18.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),则点D的坐标是_____.三、解答题(共78分)19.(8分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.20.(8分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)21.(8分)在下列网格中,每个小正方形的边长均为1个单位,△ABC在网格中的位置如图所示:(1)在图中画出△ABC先向右平移2个单位,再向上平移3个单位后的图形;(2)若点A的坐标是(-4,-3),试在图中画出平面直角坐标系,坐标系的原点记作O;(3)根据(2)的坐标系,作出以O为旋转中心,逆时针旋转90º后的图形,并求出点A一共运动的路径长.22.(10分)计算:=_________。23.(10分)已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C.(1)求二次函数解析式;(2)若S△AOB∶S△BOC=1:3,求直线AC的解析式;(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使△BEF和△CGE相似?若存在,请求出所有点E的坐标;若不存在,请说明理由.24.(10分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.25.(12分)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,求PD的长度最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.26.如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,随的增大而________,常数的取值范围是________;(2)若此反比例函数的图象经过点,求的值.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意先求出AE和BE的长度,再求出∠BAE的sin值,根据平行线的性质得出∠ADE=∠BAE,即可得出答案.【详解】∵,∴BE=∴∵ABCD是平行四边形∴AD∥BC∴∠ADE=∠DEC又∵∠BAE=∠DEC∴∠BAE=∠ADE∴∴故答案选择A.【点睛】本题考查的是平行四边形的综合,难度适中,涉及到了平行四边形的性质以及三角函数值相关知识,需要熟练掌握.2、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.3、A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:,无解;②当x>0,y<0时,方程组变形得:,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:,此时方程组的解为;④当x<0,y<0时,方程组变形得:,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.4、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【详解】解:旋转角是故选:D.【点睛】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.5、B【分析】直接利用关于原点对称点的纵横坐标均互为相反数分析得出答案.【详解】点P(2a+1,a﹣1)关于原点对称的点(﹣2a﹣1,﹣a+1)在第一象限,则,解得:a<﹣.故选:B.【点睛】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.6、C【分析】直接利用位似图形的性质进而分别分析得出答案.【详解】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',∴△ABC∽△A'B'C',点O、C、C'共线,AO:OA'=BO:OB'=1:2,∴AB∥A'B',AO:OA'=1:1.∴A、B、D正确,C错误.故答案为:C.【点睛】本题主要考查了位似变换,正确把握位似图形的性质是解题的关键.7、A【分析】由题意得EF为三角形AMC的中位线,由中位线的性质可得:EF的长恒等于定值AC的一半.【详解】解:∵E,F分别是AM,MC的中点,

∴,

∵A、C是定点,

∴AC的的长恒为定长,

∴无论M运动到哪个位置EF的长不变,

故选A.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行且等于第三边的一半.8、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.9、B【详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.10、C【分析】先通过条件算出O’坐标,代入反比例函数求出k即可.【详解】由题干可知,B点坐标为(1,0),旋转90°后,可知B’坐标为(3,2),O’坐标为(3,1).∵双曲线经过O’,∴1=,解得k=3.故选C.【点睛】本题考查反比例函数图象与性质,关键在于坐标平面内的图形变换找出关键点坐标.11、C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.12、B【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【详解】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,OC过圆心∴AM=BM,在Rt△AOM中,,∴AB=2AM=2×4=1.故选:B.【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.二、填空题(每题4分,共24分)13、.【解析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【详解】解:如图,对角线所分得的三个三角形相似,根据相似的性质可知,解得,即阴影梯形的上底就是().再根据相似的性质可知,解得:,所以梯形的下底就是,所以阴影梯形的面积是.故答案为:.【点睛】本题考查的是相似三角形的性质,相似三角形的对应边成比例.14、1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.考点:圆周角定理.15、2+.【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论.【详解】∵点(0,1),四边形,,均是正方形,点、、和点、、、分别在抛物线和y轴上,∴(1,1),(0,2),∴(,2),∴(0,2+),∵点的纵坐标与点相同,点在二次函数的图象上,∴(,),即,∴.故答案为:2+.【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键.16、相交【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,

∵4>2,即:d<r,

∴直线L与⊙O的位置关系是相交.

故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.17、k≥-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.18、(3,2)【分析】根据题意和函数图象,可以用含m代数式表示出n,然后根据点A和点E都在改反比例函数图象上,即可求得m的值,进而求得点E的坐标,从而可以写出点D的坐标,本题得以解决.【详解】解:由题意可得,n=m+2,则点E的坐标为(m+2,),∵点A和点E均在反比例函数y=(k≠0)的图象上,∴2m=,解得,m=1,∴点E的坐标为(3,),∴点D的坐标为(3,2),故答案为:(3,2).【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共78分)19、(1)四边形;(2)详见解析;(3)【分析】(1)根据三角形相似的判定定理,得∆ABC~∆EAC,进而即可得到答案;(2)由旋转的性质得,,,结合,得,进而即可得到结论;(3)过点作于,得,根据三角形的面积得,结合∽,即可得到答案.【详解】(1)由题意得:,∴,∴∆ABC~∆EAC,∴被分割成的“友好四边形”的是:四边形,故答案是:四边形;(2)根据旋转的性质得,,,∵,∴,∴,∴∽,∴四边形是“友好四边形”;(3)过点作于,∴在中,,∵的面积为,∴,∴,∵四边形是被分割成的“友好四边形”,且,∴∽,∴,∴,∴.【点睛】本题主要考查相似三角形的判定和性质定理以及三角函数的定义,掌握三角形相似的判定和性质,是解题的关键.20、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.21、(1)见解析;(2)见解析;(3)图见解析,点A一共运动的路径长为【分析】(1)根据平移的性质描点作图即可.(2)根据A点坐标在图中找出原点,画出平面直角坐标系即可.(3)利用旋转的性质描点画出图形,由于旋转所经过的路径是圆弧,因此利用弧长公式计算即可.【详解】解:所作图形如下:点A由A到运动的路径长为5,再由到运动的路径长为∴点A一共运动的路径长为.【点睛】本题主要考查了图形的平移,旋转的性质,弧长的计算,熟记旋转时的路径是圆弧,利用弧的计算公式列式计算是解题的关键.22、4【解析】根据二次根式除法法则计算即可求解.【详解】解:原式===4.故答案为:4.【点睛】本题考查二次根式的除法运算,注意二次根式的运算结果要化为最简二次根式.在二次根式的混合运算中,解题关键是能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径.23、(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(1)存在,E点坐标为E(1.-1)或E(2,-2).【分析】(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;(2)连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,根据得到,,由EB∥DC,对应线段成比例得到,再联立y=kx-4与y=x2-4x得到方程kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;(1)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m),根据题意分∠EFB=90°和∠EBF=90°,分别找到图形特点进行列式求解.【详解】解:(1)∵二次函数y=x2+bx+c经过原点,∴c=0∵当x=2时函数有最小值∴,∴b=-4,c=0,∴y=x2-4x;(2)如图,连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,∵∴∴∵EB∥DC∴∵y=kx-4交y=x2-4x于B、C∴kx-4=x2-4x,即x2-(k+4)x+4=0∴,或∵xB<xC∴EB=xB=,DC=xC=∴4•=解得k=-9(不符题意,舍去)或k=1∴k=1∴直线AC的解析式为y=x-4;(1)存在.理由如下:由题意得∠EGC=90°,∵直线AC的解析式为y=x-4∴A(0,-4),C(4,0)联立两函数得,解得或∴B(1,-1)设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m)①如图,当∠EFB=90°,即CG//BF时,△BFE∽△CGE.此时F点纵坐标与B点纵坐标相等.∴F(m,-1)即m2-4m=-1解得m=1(舍去)或m=1∴F(1,-1)故此时E(1,-1)②如图当∠EBF=90°,△FBE∽△CGE∵C(4,0),A(0,4)∴OA=OC∴∠GCE=45°=∠BEF=∠BFE过B点做BH⊥EF,则H(m,-1)∴BH=m-1又∵∠GCE=45°=∠BEF=∠BFE∴△BEF是等腰直角三角形,又BH⊥EF∴EH=HF,EF=2BH∴(m-4)-(m2-4m)=2(m-1)解得m1=1(舍去)m2=2∴E(2,-2)综上,E点坐标为E(1.-1)或E(2,-2).【点睛】此题主要考查二次函数的图像及几何综合,解题的关键是熟知二次函数的图像与性质、平行线分线段成比例、相似三角形及等腰三角形的性质.24、(1);(2).【分析】(1)设该二次函数的解析式为,因为顶点(2,-1),可以求出h,k,将A(0,3)代入可以求出a,即可得出二次函数解析式.(2)由(1)求出函数解析式,令y等于0可以求出函数图像与x轴的两个交点为B,C两点,然后利用面积公式,即可求出三角形ABC的面积.【详解】(1)设该二次函数的解析式为∵顶点为(2,)∴又∵图象经过A(0,3)∴即∴该抛物线的解析式为(2)当时,,解得,∴C(3,0)B(1,0)得∴.【点睛】熟练掌握待定系数法求二次函数解析式和三角形的面积公式是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论