版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()A. B.a C. D.2.如图,将一副三角板如图放置,如果,那么点到的距离为()A. B. C. D.3.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为A. B. C.2 D.15.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个6.如图,在△ABC中,AD⊥BC交BC于点D,AD=BD,若AB=,tanC=,则BC=()A.8 B. C.7 D.7.“割圆术”是我国古代的一位伟大的数学家刘徽首创的,该割圆术,就是通过不断倍增圆内接正多边形的边数来求出圆周率的一种方法,某同学在学习“割圆术”的过程中,画了一个如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为().A.1 B.3 C.3.1 D.3.148.如图,在中,,则AC的长为()A.5 B.8 C.12 D.139.若,则的值为()A.1 B. C. D.10.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形二、填空题(每小题3分,共24分)11.将抛物向右平移个单位,得到新的解析式为___________.12.如图,一段抛物线记为,它与轴交于两点、,将绕旋转得到,交轴于,将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第8段抛物线上,则等于__________13.如图,转盘中个扇形的面积都相等.任意转动转盘次,当转盘停止转动时,指针落在阴影部分的概率为________.14.如果,那么______(用向量、表示向量).15.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.16.如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC,若AD2=AB•DC,则OD=__.17.二次函数的图象与轴只有一个公共点,则的值为________.18.如图,等边△ABO的边长为2,点B在x轴上,反比例函数图象经过点A,将△ABO绕点O顺时针旋转a(0°<a<360°),使点A仍落在双曲线上,则a=_____.三、解答题(共66分)19.(10分)计算:4+(-2)2×2-(-36)÷420.(6分)某司机驾驶汽车从甲地去乙地,他以的平均速度用到达目的地.(1)当他按原路匀速返回时,汽车的速度与时间有怎样的函数关系?(2)如果该司机返回到甲地的时间不超过,那么返程时的平均速度不能小于多少?21.(6分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.22.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.23.(8分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.24.(8分)(1)计算:|﹣|+cos30°﹣(﹣)﹣1﹣+(π﹣3)0(2)若,求•(a﹣b)的值.25.(10分)如图,是中边上的中点,交于点,是中边上的中点,且与交于点.(1)求的值.(2)若,求的长.(用含的代数式表示)26.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,∴a>0,b<0,∴b−a<0,∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,故选A.【点睛】本题考查点的坐标,二次根式的性质与化简,解题的关键是根据象限特征判断正负.2、B【分析】作EF⊥BC于F,设EF=x,根据三角函数分别表示出BF,CF,根据BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【详解】如图,作EF⊥BC于F,设EF=x,又∠ABC=45°,∠DCB=30°,则BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定及解直角三角形的应用.3、D【分析】根据轴对称图形与中心对称图形的概念分别分析得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点睛】本题考查轴对称图形与中心对称图形的概念,理解掌握两个定义是解答关键.4、A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD=,故选A.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.5、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,
解得:,(不合题意,舍去),当x<0时,,即:,
解得:,,∴函数的图象上的“好点”共有3个.
故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.6、C【分析】证出△ABD是等腰直角三角形,得出AD=BD=AB=4,由三角函数定义求出CD=3,即可得出答案.【详解】解:交于点,,是等腰直角三角形,,,,;故选:.【点睛】本题考查了解直角三角形、等腰直角三角形的性质以及三角函数定义;熟练掌握等腰直角三角形的性质和三角函数定义是解题的关键.7、B【分析】先求出,进而得出,根据这个圆的内接正十二边形的面积为进行求解.【详解】∵是圆的内接正十二边形,∴,∵,∴,∴这个圆的内接正十二边形的面积为,故选B.【点睛】本题考查正十二边形的面积计算,先求出是解题的关键.8、A【分析】利用余弦的定义可知,代入数据即可求出AC.【详解】∵∴故选A.【点睛】本题考查根据余弦值求线段长度,熟练掌握余弦的定义是解题的关键.9、D【解析】∵,∴==,故选D10、B【分析】根据轴对称和中心对称图形的概念判断即可.【详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【点睛】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.二、填空题(每小题3分,共24分)11、y=2(x-3)2+1【分析】利用抛物线的顶点坐标为(0,1),利用点平移的坐标变换规律得到平移后得到对应点的坐标为(3,1),然后根据顶点式写出新抛物线的解析式.【详解】解:∵
,
∴抛物线
的顶点坐标为
(0,1),把点
(0,1)
向右平移
3
个单位后得到对应点的坐标为
(3,1)
,
∴新抛物线的解析式为y=2(x-3)2+1.
故答案为y=2(x-3)2+1.【点睛】本题考查二次函数图象与几何变换,配方法,关键是先利用配方法得到抛物线的顶点坐标.12、【分析】求出抛物线与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方、第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线的解析式,然后把点P的横坐标代入计算即可.【详解】抛物线与x轴的交点为(0,0)、(2,0),将绕旋转180°得到,则的解析式为,同理可得的解析式为,的解析式为的解析式为的解析式为的解析式为的解析式为∵点在抛物线上,∴故答案为【点睛】本题考查的是二次函数的图像性质与平移,能够根据题意确定出的解析式是解题的关键.13、【分析】根据古典概型的概率的求法,求指针落在阴影部分的概率.【详解】一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件包含其中的中结果,那么事件发生的概率为.图中,因为6个扇形的面积都相等,阴影部分的有3个扇形,所以指针落在阴影部分的概率是.【点睛】本题考查古典概型的概率的求法.14、【分析】将看作关于的方程,解方程即可.【详解】∵∴∴故答案为:【点睛】本题考查平面向量的知识,解题的关键是掌握平面向量的运算法则.15、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.16、.【分析】可证△AOB≌△AOC,推出∠ACO=∠ABD,OA=OC,∠OAC=∠ACO=∠ABD,∠ADO=∠ADB,即可证明△OAD∽△ABD;依据对应边成比例,设OD=x,表示出AB、AD,根据AD2=AB•DC,列方程求解即可.【详解】在△AOB和△AOC中,∵AB=AC,OB=OC,OA=OA,∴△AOB≌△AOC(SSS),∴∠ABO=∠ACO,∵OA=OA,∴∠ACO=∠OAD,∵∠ADO=∠BDA,∴△ADO∽△BDA,∴,设OD=x,则BD=1+x,∴,∴OD,AB,∵DC=AC﹣AD=AB﹣AD,AD2=AB•DC,()2═(),整理得:x2+x﹣1=0,解得:x或x(舍去),因此AD,故答案为.【点睛】本题考查了圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,利用参数解决问题是数学解题中经常用到的方法.17、【解析】根据△=b2-4ac=0时,抛物线与x轴有1个交点得到△=(-2)2-4m=0,然后解关于m的方程即可.【详解】根据题意得△=(-2)2-4m=0,
解得m=1.
故答案是:1.【点睛】考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.18、30°或180°或210°【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为:30°或180°或210°.考点:(1)、反比例函数图象上点的坐标特征;(2)、等边三角形的性质;(3)、坐标与图形变化-旋转.三、解答题(共66分)19、21【解析】试题分析:先乘方,再乘除,最后再计算加减.试题解析:4+(-2)2×2-(-36)÷4,=4+4×2-(-36)÷4,=4+8-(-9),=12+9,=21.20、(1);(2).【分析】(1)利用路程=平均速度×时间,进而得出汽车的速度v与时间t的函数关系;
(2)结合该司机必须在5个小时之内回到甲地,列出不等式进而得出速度最小值.【详解】(1)由题意得,两地路程为,∴汽车的速度与时间的函数关系为;(2)由,得,又由题意知:,∴,∵,∴,∴.答:返程时的平均速度不能小于1.【点睛】本题主要考查了反比例函数的应用,根据路程=平均速度×时间得出函数关系是解题关键.21、(1),;(2);(3)或【分析】(1)将点A、B代入抛物线,即可求出抛物线解析式,再化为顶点式即可;
(2)如图1,连接AB,交对称轴于点N,则N(-,-2),利用相等角的正切值相等即可求出EH的长,OE的长,可写出点E的坐标;
(3)分∠EAP=90°和∠AEP=90°两种情况讨论,通过相似的性质,用含t的代数式表示出点P的坐标,可分别求出点P的坐标.【详解】解:(1)(1)将点A(-3,-2)、B(0,-2)代入抛物线,
得,,
解得,a=,c=-2,
∴y=x2+4x-2
=(x+)2-5,
∴抛物线解析式为y=x2+4x-2,顶点C的坐标为(-,-5);(2)如图1,连接AB,交对称轴于点N,则N(-,-2),,则,过作,,则,∵OH=3,∴OE=1,∴(3)①如图2,当∠EAP=90°时,
∵∠HEA+∠HAE=90,∠HAE+∠MAP=90°,
∴∠HEA=∠MAP,
又∠AHE=∠PMA=90°,,则,设,则将代入得(舍),,∴②如图3,当∠AEP=90°时,∵∠EAG+∠AEG=90°,∠AEG+∠PEN=90°,
∴∠AEG=∠EPN,
又∵∠N=∠G=90°,∴,则设,则将代入得,(舍),∴综上所述:,【点睛】此题考查了待定系数法求解析式,锐角三角函数,直角三角形的存在性等,解题关键是能够作出适当的辅助线构造相似三角形,并注意分类讨论思想的运用.22、(1)见解析(2)见解析(1).【解析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD.(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,从而可证得∠DAC=∠ECA,得到CE∥AD.(1)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值,从而得到的值.【详解】解:(1)证明:∵AC平分∠DAB∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°∴△ADC∽△ACB.∴即AC2=AB•AD.(2)证明:∵E为AB的中点∴CE=AB=AE∴∠EAC=∠ECA.∵∠DAC=∠CAB∴∠DAC=∠ECA∴CE∥AD.(1)∵CE∥AD∴△AFD∽△CFE∴.∵CE=AB∴CE=×6=1.∵AD=4∴∴.23、(1)60°;(2)【分析】(1)先根据垂径定理得出BE=CE,,再根据圆周角定理即可得出∠AOC的度数;(2)连接OB,先根据勾股定理得出OE的长,由弦BC=8cm,可得半径的长,继而求劣弧的长;【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024建设工程项目合作协议合同
- 2024年度茶叶种植技术转让合同
- 2024工程建设借款合同
- 机械设备升级服务吊装合同
- 专业装修劳务分包合同范例
- 桥梁销售合同范本
- 电信施工合同范本详解
- 创业合伙协议书格式
- 办公室迁移工程协议
- 2024年度离婚协议公证服务合同
- 江苏省南京市鼓楼区2024-2025学年八年级上学期期中英语试卷(含答案解析)
- 期中检测卷(试题)-2024-2025学年北师大版五年级上册数学
- 《运动技能学习与控制》考试复习题库(含答案)
- 智能制造工程生涯人物访谈
- 初中学生综合素质评价表
- 绿色施工管理手册
- 渗沟、盲沟的定义、附图及其施工要求
- ASME标准中文版
- 树木砍伐施工方案(完整版)
- 挖掘机、装载机检验报告(完整)
- (完整版)国家计委、建设部计价格工程勘察设计收费管理规定
评论
0/150
提交评论