版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若点,,在反比例函数的图象上,则y1,y2,y3的大小关系是()A. B. C. D.2.下列电视台的台标,是中心对称图形的是()A. B. C. D.3.1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是()A.80米 B.85米 C.120米 D.125米4.下列图形是中心对称图形的是()A. B. C. D.5.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+36.在Rt△ABC中,,如果∠A=,,那么线段AC的长可表示为().A.; B.; C.; D..7.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.8.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4) B.(3,3) C.(3,1) D.(4,1)9.若,面积之比为,则相似比为()A. B. C. D.10.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.11.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x212.若要得到函数的图象,只需将函数的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度二、填空题(每题4分,共24分)13.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.14.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是、,且,则队员身高比较整齐的球队是_____.15.⊙O的半径为10cm,点P到圆心O的距离为12cm,则点P和⊙O的位置关系是_____.16.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.17.边心距是的正六边形的面积为___________.18.已知MAX(a,b)=a,其中a>b如果MAX(,0)=0,那么x的取值范围为__________三、解答题(共78分)19.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.20.(8分)如图,反比例函数与一次函数交于和两点.(1)根据题中所给的条件,求出一次函数和反比例函数的解析式.(2)结合函数图象,指出当时,的取值范围.21.(8分)如图,在中,,求的度数.22.(10分)某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.23.(10分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作.(1)写出为负数的概率;(2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解)24.(10分)已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B(1)如图1,若AB=AC,求证:;(2)如图2,若AD=AE,求证:;(3)在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=,则AB=____________.25.(12分)齐齐哈尔新玛特商场购进大嘴猴品牌服装每件成本为100元,在试销过程中发现:销售单价元,与每天销售量(件)之间满足如图所示的关系.(1)求出与之间的函数关系式(不用写出自变量的取值范围);(2)写出每天的利润(元)与销售单价之间的函数解析式;并确定将售价定为多少元时,能使每天的利润最大,最大利润是多少?26.已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.
参考答案一、选择题(每题4分,共48分)1、D【分析】由于反比例函数的系数是-8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:∵点、、在反比例函数的图象上,∴,,,又∵,∴.故选:D.【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.2、D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合.故选D.3、D【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.解:设电视塔的高度应是x,根据题意得:=,解得:x=125米.故选D.命题立意:考查利用所学知识解决实际问题的能力.4、B【分析】根据中心对称图形的概念和各图的性质求解.【详解】A、是轴对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、C【解析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx+c,顶点式:y=a(x-h)2+k;两根式:y=6、B【分析】根据余弦函数是邻边比斜边,可得答案.【详解】解:由题意,得,,故选:.【点睛】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键.7、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,
∴sinA==,
故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.8、A【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.9、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,
∴它们的相似比为3:1.
故选:C.【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【点睛】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.11、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12、A【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【详解】∵抛物线y=(x-1)1+1的顶点坐标为(1,1),抛物线y=x1的顶点坐标为(0,0),∴将抛物线y=x1先向右平移1个单位长度,再向上平移1个单位长度即可得出抛物线y=(x-1)1+1.故选:A.【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.二、填空题(每题4分,共24分)13、m>1【解析】∵反比例函数的图象在其每个象限内,y随x的增大而减小,∴>0,解得:m>1,故答案为m>1.14、乙【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量15、点P在⊙O外【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵⊙O的半径r=10cm,点P到圆心O的距离OP=12cm,∴OP>r,∴点P在⊙O外,故答案为点P在⊙O外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16、1【分析】由正方形的性质得出△ABD是等腰直角三角形,由EF∥BD,得出△AEF是等腰直角三角形,由折叠的性质得△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,则GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),由四边形BEFD与△AHG的周长差为5-2列出方程解得x=4,即可得出结果.【详解】∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∵EF∥BD,∴△AEF是等腰直角三角形,由折叠的性质得:△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,∴GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),∵四边形BEFD与△AHG的周长差为5-2,∴x+(x-1)+2-[2(x-2)+(x-2)]=5-2,解得:x=4,∴正方形ABCD的周长为:4×4=1,故答案为:1.【点睛】本题考查了折叠的性质、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握折叠与正方形的性质以及等腰直角三角形的性质是解题的关键.17、【分析】根据题意画出图形,先求出∠AOB的度数,证明△AOB是等边三角形,得出AB=OA,再根据直角三角形的性质求出OA的长,再根据S六边形=6S△AOB即可得出结论.【详解】解:∵图中是正六边形,∴∠AOB=60°.∵OA=OB,∴△OAB是等边三角形.∴OA=OB=AB,∵OD⊥AB,OD=,∴OA=∴AB=4,∴S△AOB=AB×OD=×2×=,∴正六边形的面积=6S△AOB=6×=6.故答案为:6.【点睛】本题考查的是正多边形和圆,熟知正六边形的性质并求出△AOB的面积是解答此题的关键.18、0﹤x﹤1【分析】由题意根据定义得出x2-x<0,通过作出函数y=x2-x的图象,根据图象即可求得x的取值范围.【详解】解:由题意可知x2-x<0,画出函数y=x2-x的图象如图:由图象可知x2-x<0的取值范围为0<x<1.故答案为:0<x<1.【点睛】本题主要考查二次函数的性质,解题的关键是理解新定义并根据新定义列出关于x的不等式运用数形结合思维分析.三、解答题(共78分)19、(1)40人;1;(2)平均数是15;众数16;中位数15.【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.20、(1),y=x-2;(2)或【分析】(1)根据点A的坐标即可求出反比例函数的解析式,再求出B的坐标,然后将A,B的坐标代入一次函数求出a,b,即可求出一次函数的解析式.(2)结合图象找出反比例函数在一次函数上方所对应的自变量的取值范围即可解答.【详解】解:(1)根据点的坐标可知,在反比例函数中,,∴反比例函数的解析式为.∴把点和代入,即,解得∴一次函数的解析式为.(2)观察图象可得,或.【点睛】本题考查了反比例函数与一次函数的应用,结合待定系数法求函数的解析式.21、70°【分析】根据等腰三角形的性质和三角形的内角和定理即可求得.【详解】故的度数为.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理,根据等腰三角形的性质:等边对等角得出是解题关键.22、(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)1.【分析】(1)①将点(40,300)、(45,150)代入一次函数表达式:y=kx+b即可求解;②设该商品的售价是x元,则月销售利润w=y(x-30),求解即可;(1)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w取得最大值1400,解关于m的方程即可.【详解】(1)①解:设y=kx+b(k,b为常数,k≠0)根据题意得:,解得:∴y=-10x+700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x元/件时,月销售利润为w元根据题意得:w=y(x-30)=(x-30)(-10x+700)=-10x1+1000x-11000=-10(x-50)1+4000∴当x=50时w有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)由题意得:
w=[x-(m+30)](-10x+700)
=-10x1+(1000+10m)x-11000-700m
对称轴为x=50+
∵m>0
∴50+>50
∵商家规定该运动服售价不得超过40元/件
∴由二次函数的性质,可知当x=40时,月销售量最大利润是1400元
∴-10×401+(1000+10m)×40-11000-700m=1400
解得:m=1
∴m的值为1.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.23、(1);(2)【分析】(1)用负数的个数除以数的总数即为所求的概率;
(2)画树状图列举出所有情况,看k<0,b<0的情况占总情况的多少即可.【详解】解:(1)共有3个数,其中负数有2个,那么为负数的概率为(2)画树状图可知,两次抽取卡片试验共有9种不同结果,每种可能性相同“一次函数图象经过第二、三、四象限”等价于“且”抽取卡片满足,有4种情况所以,一次函数图象经过第二、三、四象限的概率是.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.注意过二、三、四象限的一次函数的k为负数,b为负数.24、【解析】分析:(1)∠ADE=∠B,可得根据等边对等角得到△BAD∽△CDE,根据相似三角形的性质即可证明.(2)在线段AB上截取DB=DF,证明△AFD∽△DEC,根据相似三角形的性质即可证明.(3)过点E作EF⊥BC于F,根据tan∠BAD=tan∠EDF=,设EF=x,DF=2x,则DE=,证明△EDC∽△GEC,求得,根据CE2=CD·CG,求出CD=,根据△BAD∽△GDE,即可求出的长度.详解:(1)∠ADE=∠B,可得∵△BAD∽△CDE,∴;(2)在线段AB上截取DB=DF∴∠B=∠DFB=∠ADE∵AD=AE∴∠ADE=∠AED∴∠AED=∠DFB,同理:∵∠BAD+∠BDA=180°-∠B,∠BDA+∠CDE=180°-∠ADE∴∠BAD=∠CDE∵∠AFD=180°-∠DFB,∠DEC=180°-∠AED∴∠AFD=∠DEC,∴△AFD∽△DEC,∴(3)过点E作EF⊥BC于F∵∠ADE=∠B=45°∴∠BDA+∠BAD=135°,∠BDA+∠EDC=135°∴∠BAD=∠EBC(三等角模型中,这个始终存在)∵tan∠BAD=tan∠EDF=∴设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大厦长期保洁服务合同
- 房屋征收拆迁补偿协议书
- 工程修路合同
- 广告牌场地施工租赁协议
- 浙江省强基联盟2023-2024学年高二下学期5月联考政治试题
- 123角平分线的性质(讲练)(8大题型)-2022-2023学年八年级数学上册重要考点(人教版)
- 顶管法通道技术指引
- 浙江省绍兴市2024年6月普通高中学业水平适应性考试数学试题2
- 桥梁养护工程师培训题
- 第7课《荷叶·母亲》教学设计-2024-2025学年统编版语文七年级上册
- 01511现代管理实务 自考重点
- DB22∕T 2646.1-2017 吉林省水利工程定额 第1部分:工程设计概(估)算编制规定
- 【人才评估】如何绘制人才画像
- 山东省安氏宗亲分布村落
- yesterday-once-more-歌曲赏析
- 林业局低效林改造工程施工组织设计
- 《影视剧本创作》教学大纲
- 公司危机事件处理规定
- (完整版)小学生健康档案表
- 微积分基本定理教案
- edta依赖性假性血小板减少ppt课件
评论
0/150
提交评论