版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知⊙O的半径是4,OP=5,则点P与⊙O的位置关系是()A.点P在圆上 B.点P在圆内 C.点P在圆外 D.不能确定2.如图,,垂足为点,,,则的度数为()A. B. C. D.3.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.14.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25° B.40° C.45° D.50°5.如图,已知是的外接圆,是的直径,是的弦,,则等于()A. B. C. D.6.已知关于的一元二次方程的一个根是2,则的值为()A.-1 B.1 C.-2 D.27.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.8.如图,是的直径,点、在上.若,则的度数为()A. B. C. D.9.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5 B.﹣1 C.2﹣ D.10.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.函数y=(m为常数)的图象上有三点(﹣1,y1)、、,则函数值y1、y2、y3的大小关系是_____.(用“<”符号连接)12.如图,在中,,若,则的值为_________13.如图,中,ACB=90°,AC=4,BC=3,则_______.14.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.15.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为___________.16.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.17.不等式组的解集为__________.18.如图,在矩形中,,点分别在矩形的各边上,,则四边形的周长是______________.三、解答题(共66分)19.(10分)如图,二次函数(a0)与x轴交于A、C两点,与y轴交于点B,P为抛物线的顶点,连接AB,已知OA:OC=1:3.(1)求A、C两点坐标;(2)过点B作BD∥x轴交抛物线于D,过点P作PE∥AB交x轴于E,连接DE,①求E坐标;②若tan∠BPM=,求抛物线的解析式.20.(6分)如图,抛物线y=ax2+bx+c(a≠0)过点M(-2,3),顶点坐标为N(-1,4),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当PM+PB的值最小时,求点P的坐标;21.(6分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.22.(8分)随着科学技术的不断进步,草莓的品种越来越多样化,某基地农户计划尝试购进牛奶草莓和巧克力草莓新品种共5000株,其中牛奶草莓成本每株5元,巧克力草莓成本每株8元.(1)由于初次尝试该品种草莓种植,农户购进两种草莓品种的金额不得超过34000元,则牛奶草莓植株至少购进多少株?(2)农户按(1)中牛奶草莓的最少进货量购进牛奶草莓巧克力草莓植株,经过几个月的精心培育,可收获草莓共计2500千克,农户在培育过程中共花费25000元.农户计划采用直接出售与生态采摘出售两种方式进行售卖,其中直接出售牛奶草莓的售价为每千克30元,直接出售巧克力草莓的售价为每千克40元,且两种草莓各出售了500千克.而生态采摘出售时,两种品种幕莓的采摘销售价格一样,且通过生态采摘把余下的草莓全部销售完,但采摘过程中会有0.6a%的损耗,其中生态采摘出售草莓的单价比直接出售巧克力草莓的单价还高3a%(0<a≤75),这样该农户经营草莓的总利润为65250元,求a的值.23.(8分)求值:24.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.25.(10分)在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD的边与图象G有且只有三个公共点时,直接写出n的取值范围.26.(10分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据“点到圆心的距离大于半径,则点在圆外”即可解答.【详解】解:∵⊙O的半径是4,OP=5,5>4即点到圆心的距离大于半径,∴点P在圆外,故答案选C.【点睛】本题考查了点与圆的位置关系,通过比较点到圆心的距离与半径的大小确定点与圆的位置关系.2、B【解析】由平行线的性质可得,继而根据垂直的定义即可求得答案.【详解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故选B.【点睛】本题考查了垂线的定义,平行线的性质,熟练掌握相关知识是解题的关键.3、C【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4、B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.5、C【分析】由直径所对的圆周角是直角,可得∠ADB=90°,可计算出∠BAD,再由同弧所对的圆周角相等得∠BCD=∠BAD.【详解】∵是的直径∴∠ADB=90°∴∠BAD=90°-∠ABD=32°∴∠BCD=∠BAD=32°.故选C.【点睛】本题考查圆周角定理,熟练运用该定理将角度进行转换是关键.6、D【分析】把代入原方程得到关于的一元一次方程,解方程即可.【详解】解:把代入原方程得:故选D.【点睛】本题考查的是一元二次方程的解的含义,掌握方程解的含义是解题的关键.7、D【解析】如图,∠ABC所在的直角三角形的对边AD=3,邻边BD=4,所以,tan∠ABC=.故选D.8、C【分析】根据圆周角定理计算即可.【详解】解:∵,∴,∴,故选:C.【点睛】此题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.9、C【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【详解】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【点睛】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10、C【分析】根据一元二次方程的解的定义,把x=1代入方程得1+2﹣m=0,然后解关于m的一次方程即可.【详解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故选:C.【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.二、填空题(每小题3分,共24分)11、y2<y1<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为一、三,其中在第三象限的点的纵坐标总小于在第一象限的纵坐标,进而判断在同一象限内的点(﹣1,y1)和(,y2)的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为m2+1>0,∴图象的两个分支在一、三象限;∵第三象限的点的纵坐标总小于在第一象限的纵坐标,点(﹣1,y1)和(,y2)在第三象限,点(,y1)在第一象限,∴y1最小,∵﹣1<,y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故答案为y2<y1<y1.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在一、三象限;第三象限的点的纵坐标总小于在第一象限的纵坐标;在同一象限内,y随x的增大而减小.12、【分析】根据相似三角形的性质,得出,将AC、AB的值代入即可得出答案.【详解】即DC=故答案为:.【点睛】本题考查了相似三角形的性质,熟练掌握性质定理是解题的关键.13、【分析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A=.故答案为.【点睛】本题考查了解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.14、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.15、(,)【解析】过A′作A′C⊥x轴于C,根据旋转得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【详解】如图,过A′作A′C⊥x轴于C,∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐标为(,-).故答案为:(,).【点睛】本题考查的知识点是坐标与图形变化-旋转,解题的关键是熟练的掌握坐标与图形变化-旋转.16、2.【解析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【详解】圆锥的弧长,
圆锥的底面半径,
故答案为2.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.17、【解析】首先分别解出两个不等式的解集,再确定不等式组的解集.【详解】解答:,
由①得:,
由②得:,
∴不等式组的解集为,故答案为:【点睛】此题主要考查了解一元一次不等式组,关键是解不等式.18、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解.【详解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∴四边形EFGH的周长=,故答案为:.【点睛】本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点.三、解答题(共66分)19、(1)A(-1,0),C(3,0);(2)①E(-,0);②原函数解析式为:.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以设A(-m,0),C(3m,0),结合对称轴即可求出结果;(2)①过点P作PM⊥x轴于点M,连接PE,DE,先证明△ABO△EPM得到,找出OE=,再根据A(-1,0)代入解析式得:3a+c=0,c=-3a,即可求出OE的长,则坐标即可找到;②设PM交BD于点N;根据点P(1,c-a),BN‖AC,PM⊥x轴表示出PN=-a,再由tan∠BPM=求出a,结合(1)知道c,即可知道函数解析式.【详解】(1)∵二次函数为:(a<0),∴对称轴为,过点P作PM⊥x轴于点M,则M(1,0),M为AC中点,又OA:OC=1:3,设A(-m,0),C(3m,0),∴,解得:m=1,∴A(-1,0),C(3,0),(2)①做图如下:∵PE∥AB,∴∠BAO=∠PEM,又∠AOB=∠EMP,∴△ABO△EPM,∴,由(1)知:A(-1,0),C(3,0),M(1,0),B(0,c),P(1,c-a),∴,∴OE=,将A(-1,0)代入解析式得:3a+c=0,∴c=-3a,∴,∴E(-,0);②设PM交BD于点N;∵(a<0),∴x=1时,y=c-a,即点P(1,c-a),∵BN‖AC,PM⊥x轴∴NM=BO=c,BN=OM=1,∴PN=-a,∵tan∠BPM=,∴tan∠BPM=,∴PN=,即a=-,由(1)知c=-3a,∴c=;∴原函数解析式为:.【点睛】此题考查了抛物线与x轴的交点;二次函数的性质,待定系数法求二次函数解析式.20、(1)二次函数的解析式为:;(2)点P的坐标为(-1,2)【分析】(1)把顶点N的坐标和点M的坐标代入计算,即可求出抛物线的解析式;(2)先求出点A、B的坐标,连接AM,与对称轴相交于点P,求出直线AM的解析式,即可求出点P的坐标.【详解】解:(1)由抛物线y=ax2+bx+c(a≠0)的图象过点M(-2,3),顶点坐标为N(-1,4),得到关于a、b、c的方程组:解得:a=-1,b=2,c=3,∴二次函数的解析式为:.(2)如图:连接AM,与对称轴相交于点P,连接BP,∵抛物线与x轴相交于点A、B,则点A、B关于抛物线的对称轴对称,∴PA=PB,∴PM+PB的最小值为PA+PM=AM的长度;∵,令y=0,则∴,∴,,∴点A的坐标为:(1,0),∵点M的坐标为(2,3),∴直线AM的解析式为:,当x=时,y=2,∴点P的坐标为(1,2);【点睛】本题考查了二次函数的性质,解一元二次方程,一次函数的性质,待定系数法求解析式,最短路径问题,解题的关键是熟练掌握所学的知识,正确得到点P的坐标.21、(1)①y=x2﹣8x+3;②线段MQ的最大值为1.(2)m+n的值为定值.m+n=2.【分析】(1)①根据点B的坐标和二次函数图象的对称轴即可求出二次函数解析式;②设M(m,m2﹣8m+3),利用待定系数法求出直线BC的解析式,从而求出Q(m,﹣2m+3),即可求出MQ的长与m的函数关系式,然后利用二次函数求最值即可;(2)将B(2,0)代入二次函数解析式中,求出二次函数解析式即可求出点C的坐标,然后利用待定系数法求出直线BC的解析式,根据一次函数的性质设出直线MN的解析式,然后联立方程结合一元二次方程根与系数的关系即可得出结论.【详解】(1)①由题意,解得,∴二次函数的解析式为y=x2﹣8x+3.②如图1中,设M(m,m2﹣8m+3),∵B(2,0),C(0,3),∴直线BC的解析式为y=﹣2x+3,∵MQ⊥x轴,∴Q(m,﹣2m+3),∴QM=﹣2m+3﹣(m2﹣8m+3)=﹣m2+2m=﹣(m﹣3)2+1,∵﹣1<0,∴m=3时,QM有最大值,最大值为1.(2)结论:m+n的值为定值.理由:如图2中,将B(2,0)代入二次函数解析式中,得解得:∴二次函数解析式为∴C(0,﹣32﹣2b),设直线BC的解析式为y=kx﹣32﹣2b,把(2,0)代入得到:k=2+b,∴直线BC的解析式为y=(2+b)x﹣32﹣2b,∵MN∥CB,∴可以假设直线MN的解析式为y=(2+b)x+b′,由,消去y得到:x2﹣2x﹣32﹣2b﹣b′=0,∴x1+x2=2,∵点M、N的横坐标为m、n,∴m+n=2.∴m+n为定值,m+n=2.【点睛】此题考查的是二次函数与一次函数的综合题型,掌握利用待定系数法求二次函数解析式、一次函数解析式、利用二次函数求最值、一元二次方程根与系数的关系是解决此题的关键.22、(1)牛奶草莓植株至少购进2株;(2)a的值为1.【分析】(1)设购进牛奶草莓植株x株,则购进巧克力草莓植株(5000﹣x)株,根据总价=单价×数量结合购进两种草莓品种的金额不得超过34000元,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论;(2)根据利润=销售收入﹣成本﹣消耗,即可得出关于a的一元二次方程,利用换元法解一元二次方程即可求出a值,取其小于等于75的值即可得出结论.【详解】解:(1)设购进牛奶草莓植株x株,则购进巧克力草莓植株(5000﹣x)株,根据题意得:5x+8(5000﹣x)≤34000,解得:x≥2.答:牛奶草莓植株至少购进2株.(2)根据题意得:500×(30+40)+(100﹣500﹣500)(1﹣0.6a%)×40(1+3a%)﹣1000﹣34000=6510,令m=a%,则原方程可整理得:48m2﹣64m+13=0,解得:m1=,m2=,∴a1=×100=1,a2=×100=,∵0<a≤75,∴a1=1,a2=(不合题意,舍去).答:a的值为1.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用,根据题意正确列出不等式和方程是解答本题的关键.23、2.【分析】先将三角函数值代入,再根据混合运算顺序依此计算可得.【详解】原式=【点睛】本题主要考查了特殊角的三角函数值,解题的关键是熟练掌握各特殊角的三角函数值.24、.【分析】利用树状图得出所有可能的结果数和甲组抽到小区,同时乙组抽到小区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如下:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率=.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握用树状图或列表法求解的方法是解题的关键.25、(1)n的值为﹣3或1;(2)①t=2±或﹣4或0,②﹣2﹣≤k≤﹣2;(3)当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【分析】(1)先确定图像G2的顶点坐标和解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;(2)①先分别求出图象G1和G2的解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;②结合图像如图1,即可确定k的取值范围;(3)结合图像如图2,根据分n的取值范围分类讨论即可求解.【详解】(1)∵抛物线y=x2﹣4x+n=(x﹣2)2+n﹣4,∴顶点坐标为(2,n﹣4),∵将G1绕坐标原点旋转180°得到图象G2,∴图象G2的顶点坐标为(﹣2,﹣n+4),∴图象G2的解析式为:y=﹣(x+2)2+4﹣n,若点P(﹣1,2)在图象G1上,∴2=9+n﹣4,∴n=﹣3;若点P(﹣1,2)在图象G2上,∴2=﹣1+4﹣n,∴n=1;综上所述:点P(﹣1,2)在图象G上,n的值为﹣3或1;(2)①当n=﹣1时,则图象G1的解析式为:y=(x﹣2)2﹣5,图象G2的解析式为:y=﹣(x+2)2+5,若点Q(t,1)在图象G1上,∴1=(t﹣2)2﹣5,∴t=2±,若点Q(t,1)在图象G2上,∴1=﹣(t+2)2+5,∴t1=﹣4,t2=0②如图1,当x=2时,y=﹣5,当x=﹣2时,y=5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苯换热器课程设计前言
- 物流传媒业营销活动总结
- 酒店领班的领导力培养
- 化工工业行业营销策略总结
- 餐具店销售员工工作总结
- 2024年税务师题库2
- 2025届阜阳市高三语文上学期期末统测考试卷及答案解析
- 制定合同范本(2篇)
- 创新研发保密协议书(2篇)
- 2024年理论培训心得体会
- 机电拆除及施工方案0829
- 综合管理部负责人(部长)岗位职责
- 肿瘤放射治疗技术-总论课件
- 人才培养方案汇报课件
- 检验科15项质量控制指标(检验科质控小组活动记录)
- 5S评分基准模板
- 外研社小学英语三起点五年级上册(中英文对照)
- 重大行政执法法制审核流程图
- 施工现场重大危险源公示牌
- 中国小儿急性上呼吸道感染相关临床指南的解读
- 苏教版二年级科学下册第3课《神奇的新材料》教学设计
评论
0/150
提交评论