版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次函数y=ax2+bx+4(a≠0)中,若b2=4a,则()A.y最大=5 B.y最小=5 C.y最大=3 D.y最小=32.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A. B. C. D.13.已知三点在抛物线上,则的大小关系正确的是()A. B.C. D.4.为测量如图所示的斜坡垫的倾斜度,小明画出了斜坡垫的侧面示意图,测得的数据有:,则该斜坡垫的倾斜角的正弦值是()A. B. C. D.5.如图,在平面直角坐标系中,点,y是关于的二次函数,抛物线经过点.抛物线经过点抛物线经过点抛物线经过点则下列判断:①四条抛物线的开口方向均向下;②当时,四条抛物线表达式中的均随的增大而增大;③抛物线的顶点在抛物线顶点的上方;④抛物线与轴交点在点的上方.其中正确的是A.①②④ B.①③④C.①②③ D.②③④6.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O于点D,则CD的最大值为()A. B.2 C. D.7.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.38.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.图象是轴对称图形,但不是中心对称图形C.无论x取何值时,y随x的增大而增大D.点(,﹣8)在该函数的图象上9.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.1210.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在边长为的等边三角形ABC中,以点A为圆心的圆与边BC相切,与边AB、AC相交于点D、E,则图中阴影部分的面积为_______.12.如图,在四边形中,,,则的度数为______.13.某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y(件)与每件的销售价格x(元/件)之间满足一次函数.在商品不积压且不考虑其他因素的条件下,销售价格定为______元时,才能使每月的毛利润w最大,每月的最大毛利润是为_______元.14.分解因式:.15.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.16.b和2的比例中项是4,则b=__.17.婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______.18.若是方程的一个根.则的值是________.三、解答题(共66分)19.(10分)如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.20.(6分)已知函数,(m,n,k为常数且≠0)(1)若函数的图像经过点A(2,5),B(-1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数,的图像始终经过同一个定点M.①求点M的坐标和k的取值②若m≤2,当-1≤x≤2时,总有≤,求m+n的取值范围.21.(6分)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.(8分)解下列方程:(1)(y﹣1)2﹣4=1;(2)3x2﹣x﹣1=1.23.(8分)将一元二次方程化为一般形式,并求出根的判别式的值.24.(8分)如图,在中,是边上的一点,若,求证:.25.(10分)如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).(1)当圆心在内部,∠ABO+∠ADO=70°时,求∠BOD的度数;(2)当点A在优弧BD上运动,四边形为平行四边形时,探究与的数量关系.26.(10分)如图,BD是△ABC的角平分线,点E位于边BC上,已知BD是BA与BE的比例中项.(1)求证:∠CDE=∠ABC;(2)求证:AD•CD=AB•CE.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意得到y=ax2+bx+4=,代入顶点公式即可求得.【详解】解:∵b2=4a,∴,∴∵,∴y最小值=,故选:D.【点睛】本题考查了二次函数最值问题,解决本题的关键是熟练掌握二次函数的性质,准确表达出二次函数的顶点坐标.2、C【分析】根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故选:C.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.3、B【分析】先确定抛物线的对称轴,然后根据抛物线的对称性求出点关于对称轴对称的点的坐标,再利用二次函数的增减性判断即可.【详解】解:∵抛物线的对称轴是直线x=2,∴点关于对称轴对称的点的坐标是,∵当x<2时,y随x的增大而增大,且0<1<1.5,∴.故选:B.【点睛】本题考查了二次函数的性质,属于基本题型,熟练掌握二次函数的性质是解答的关键.4、A【分析】利用正弦值的概念,的正弦值=进行计算求解.【详解】解:∵∴在Rt△ABC中,故选:A.【点睛】本题考查锐角三角函数的概念,熟练掌握正弦值的概念,熟记的正弦值=是本题的解题关键.5、A【分析】根据BC的对称轴是直线x=1.5,的对称轴是直线x=1,画大致示意图,即可进行判定.【详解】解:①由可知,四条抛物线的开口方向均向下,故①正确;②和的对称轴是直线x=1.5,和的对称轴是直线x=1,开口方向均向下,所以当时,四条抛物线表达式中的均随的增大而增大,故②正确;③和的对称轴都是直线x=1.5,D关于直线x=1.5的对称点为(-1,-2),而A点坐标为(-2,-2),可以判断比更陡,所以抛物线的顶点在抛物线顶点的下方,故③错误;④的对称轴是直线x=1,C关于直线x=1的对称点为(-1,3),可以判断出抛物线与轴交点在点的上方,故④正确.故选:A.【点睛】本题考查了二次函数的图象和性质,根据对称点找到对称轴是解题的关键,充分运用数形结合的思想能使解题更加简便.如果逐个计算出解析式,工作量显然更大.6、B【分析】连接OD,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【详解】连接OD,如图,设圆O的半径为r,∵CD⊥OC,∴∠DCO=90°,∴CD=,∴当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B重合,则由垂径定理可得:CD=CB=AC=AB=1,∴CD的最大值为1.故答案为:1.【点睛】本题考查垂径定理和勾股定理,作辅助线构造直角三角形应用勾股定理,并熟记垂径定理内容是解题的关键.7、D【解析】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.8、D【分析】反比例函数的图象时位于第一、三象限,在每个象限内,y随x的增大而减小;时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】∵当时,∴点(,﹣8)在该函数的图象上正确,故A、B、C错误,不符合题意.故选:D.【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.9、D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.10、D【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.二、填空题(每小题3分,共24分)11、【分析】首先求得圆的半径,根据阴影部分的面积=△ABC的面积−扇形ADE的面积即可求解.【详解】解:设以点A为圆心的圆与边BC相切于点F,连接AF,如图所示:
则AF⊥BC,
∵△ABC是等边三角形,
∴∠B=60°,BC=AB=,
∴AF=AB•sin60°=×=3,
∴阴影部分的面积=△ABC的面积−扇形ADE的面积=××3−=.
故答案为:.【点睛】本题主要考查了扇形的面积的计算、三角函数、切线的性质、等边三角形的性质;熟练掌握切线的性质,由三角函数求出AF是解决问题的关键.12、18°【分析】根据题意可知A、B、C、D四点共圆,由余角性质求出∠DBC的度数,再由同弧所对的圆周角相等,即为所求.【详解】解:∵在四边形中,,∴A、B、C、D四点在同一个圆上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案为:18°【点睛】本题考查的是四点共圆、互为余角的概念和同圆中同弧所对的圆周角相等.13、241【分析】本题首先通过待定系数法求解y与x的关系式,继而根据利润公式求解二次函数表达式,最后根据二次函数性质求解本题.【详解】由题意假设,将,代入一次函数可得:,求解上述方程组得:,则,∵,∴,∴,又因为商品进价为16元,故.销售利润,整理上式可得:销售利润,由二次函数性质可得:当时,取最大值为1.故当销售单价为24时,每月最大毛利润为1元.【点睛】本题考查二次函数的利润问题,解题关键在于理清题意,按照题目要求,求解二次函数表达式,最后根据二次函数性质求解此类型题目.14、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.15、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m16、1.【分析】根据题意,b与2的比例中项为4,也就是b:4=4:2,然后再进一步解答即可.【详解】根据题意可得:B:4=4:2,解得b=1,故答案为:1.【点睛】本题主要考查了比例线段,解题本题的关键是理解两个数的比例中项,然后列出比例式进一步解答.17、【分析】根据题意,可用列举法、列表法或树状统计图来计算出总次数和婷婷获胜的次数,从而求出婷婷获胜的概率【详解】解:根据题意,一共有25个等可能的结果,即(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);两人出拳的手指数之和为偶数的结果有13个,所以婷婷获胜的概率为故答案为:【点睛】本题考查的是用列举法等来求概率,找出所有可能的结果数和满足要求的结果数是解决问题的关键.18、【解析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】∵x=2是方程x²-3x+q=0的一个根,
∴x=2满足该方程,
∴2²-3×2+q=0,
解得,q=2.
故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.三、解答题(共66分)19、(1)作图见解析;(2)作图见解析.【分析】(1)根据AB=2CD,AB=BE,可知BE=CD,再根据BE//CD,可知连接CE,CE与BD的交点F即为BD的中点,连接AF,则AF即为△ABD的BD边上的中线;(2)由(1)可知连接CE与BD交于点F,则F为BD的中点,根据三角形中位线定理可得EF//AD,EF=AD,则可得四边形ADFE要等腰梯形,连接AF,DE交于点O,根据等腰梯形的性质可推导得出OA=OD,再结合BA=BD可知直线BO是线段AD的垂直平分线,据此即可作出可得△ABD的AD边上的高.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺按要求作图,结合题意认真分析图形的成因是解题的关键.20、(1);(2)①M(2,3),k=3;②【分析】(1)将两点代入解析式即可得出结果;(2)①二次函数过某定点,则函数表达式与字母系数无关,以此解决问题;②根据二次函数的性质解题【详解】解:(1)①若函数图象经过点A(2,5),将A(2,5)代入得,不成立②若函数图象经过点B(-1,3),将B(-1,3)代入得,解得.∴.(2)①过定点M,与m无关,故,代入,得点M为(2,3),也过点M,代入得,解得k=3.②在时,.,则,∴,即.∵,∴,∴,,∴.【点睛】此题考查含字母系数的二次函数综合题,掌握二次函数的图像与性质是解题的基础.21、(1)A(﹣1,0),B(3,0);(2)存在合适的点P,坐标为(4,5)或(﹣2,5).【解析】试题分析:(1)由二次函数y=(x+m)2+k的顶点坐标为M(1,﹣4)可得解析式为:,解方程:可得点A、B的坐标;(2)设点P的纵坐标为,由△PAB与△MAB同底,且S△PAB=S△MAB,可得:,从而可得=,结合点P在抛物线的图象上,可得=5,由此得到:,解方程即可得到点P的坐标.试题解析:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴,当y=0时,(x﹣1)2﹣4=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0);(2)∵△PAB与△MAB同底,且S△PAB=S△MAB,∴,即=,又∵点P在y=(x﹣1)2﹣4的图象上,∴yP≥﹣4,∴=5,则,解得:,∴存在合适的点P,坐标为(4,5)或(﹣2,5).22、(1)y1=3,y2=﹣1;(2)x1=,x2=.【分析】(1)先移项,然后利用直接开方法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】解:(1)(y﹣1)2﹣4=1,(y﹣1)2=4,y﹣1=±2,y=±2+1,y1=3,y2=﹣1;(2)3x2﹣x﹣1=1,a=3,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×3×(﹣1)=13>1,x=,x1=,x2=.【点睛】此题考查的是解一元二次方程,掌握利用直接开方法和公式法解一元二次方程是解决此题的关键.23、,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:∴a=3,b=-2,c=1∴根的判别式的值为.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根.24、见解析【分析】根据相似三角形的判定,由题意可得,进而根据相似三角形的性质,可得,推论即可得出结论.【详解】证明:∵,∴,∴,即.【点睛】本题主要考察了相似三角形的判定以及性质,灵活运用相关性质是解题的关键.25、(1)140°;(2)当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时,+=60°;点O在∠BAD外部时,|-|=60°.【解析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根据圆周角定理易得∠BOD=2∠BAD=140°;(2)分点O在∠BAD内部和外部两种情形分类讨论:①当点O在∠BAD内部时,首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②当点O在∠BAD外部时:Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.【详解】(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如图4,,∵四边形OBCD为平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农村自建房合同协议书(含智能灌溉系统)
- 二零二五年度生物科技研发人员劳动合同书(含专利申请)2篇
- 二零二五年度卫浴配件全球采购及分销合同2篇
- 2025年度农村土地流转与租赁综合服务合同3篇
- 2025年度国际体育用品品牌代理合同3篇
- 2025年度新能源汽车充电设施建设商业合同3篇
- 二零二五年度体育赛事策划团队劳动合同书(含赞助商权益)3篇
- 2025年度公司与员工业绩增长对赌合同3篇
- 2025年度水产养殖基地承包经营权转让合同3篇
- 2024年河北省海联中西医结合医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 城市规划设计计费指导意见(2004年)
- 制造业成本精细化管理
- 工业互联网标准体系(版本3.0)
- 初中生物老师经验交流课件
- 柴油发电机组采购施工 投标方案(技术方案)
- 股权招募计划书
- 创业之星学创杯经营决策常见问题汇总
- 安徽省合肥市蜀山区2023-2024学年五年级上学期期末质量检测科学试题
- 公猪站工作总结汇报
- 医学专业医学统计学试题(答案见标注) (三)
- 新教材苏教版三年级上册科学全册单元测试卷
评论
0/150
提交评论