版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B.1 C. D.2.函数y=ax2﹣1与y=ax(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.3.如图,铁道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高()A.5m B.6m C.7m D.8m4.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A. B. C. D.5.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是红球 D.摸出的是绿球6.在中,,,,则直角边的长是()A. B. C. D.7.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106° B.116° C.126° D.136°8.如图,在中,,于点D,,,则AD的长是()A.1. B. C.2 D.49.若一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,则反比例函数y=的图象所在的象限是()A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限10.在△ABC中,∠C=90°,∠B=30°,则cosA的值是()A. B. C. D.1二、填空题(每小题3分,共24分)11.如图,矩形ABCD中,AB=1,AD=.以A为圆心,AD的长为半径做弧交BC边于点E,则图中的弧长是_______.12.方程的根是___________.13.已知m为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________14.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的半径为cm.15.如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin(α+β)=__.16.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.17.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.18.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.三、解答题(共66分)19.(10分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?20.(6分)为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍.现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.(1)求最多能购进多媒体设备多少套?(2)恰逢“双十一”活动,每套多媒体设备的售价下降,每个电脑显示屏的售价下降元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加,实际投入资金与计划投入资金相同,求的值.21.(6分)如图,,DB平分∠ADC,过点B作交AD于M.连接CM交DB于N.(1)求证:;(2)若,求MN的长.22.(8分)如图,在平面直角坐标系中有点A(1,5),B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.(1)若P为AB中点,画出线段CD,保留作图痕迹;(2)若D(6,2),则P点的坐标为,C点坐标为.(3)若C为直线上的动点,则P点横、纵坐标之间的关系为.23.(8分)如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.24.(8分)如图⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.点M由点B出发沿BA方向向点A匀速运动,同时点N由点A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接MN,设运动时间为t(s)﹙0<t<4﹚,解答下列问题:⑴设△AMN的面积为S,求S与t之间的函数关系式,并求出S的最大值;⑵如图⑵,连接MC,将△MNC沿NC翻折,得到四边形MNPC,当四边形MNPC为菱形时,求t的值;⑶当t的值为,△AMN是等腰三角形.25.(10分)如图,已知是坐标原点,、两点的坐标分别为,,将绕点逆时针旋转度,得到,画出,并写出、两点的对应点、的坐标,26.(10分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.2、B【分析】本题可先通过抛物线与y轴的交点排除C、D,然后根据一次函数y=ax图象得到a的正负,再与二次函数y=ax2的图象相比较看是否一致.【详解】解:由函数y=ax2﹣1可知抛物线与y轴交于点(0,﹣1),故C、D错误;A、由抛物线可知,a>0,由直线可知,a<0,故A错误;B、由抛物线可知,a>0,由直线可知,a>0,故B正确;故选:B.【点睛】此题考查的是一次函数的图象及性质和二次函数的图象及性质,掌握一次函数的图象及性质与系数关系和二次函数的图象及性质与系数关系是解决此题的关键.3、D【分析】栏杆长短臂在升降过程中,将形成两个相似三角形,利用对应变成比例解题.【详解】解:设长臂端点升高x米,则,经检验,x=1是原方程的解,∴x=1.故选D.4、B【详解】解:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.5、A【分析】个数最多的就是可能性最大的.【详解】解:因为白球最多,所以被摸到的可能性最大.故选A.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.6、B【分析】根据余弦的定义求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosB=,
∴BC=10cos40°.
故选:B.【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.7、B【解析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.【详解】解:∵四边形ABCD是圆的内接四边形,∴∠D=180°-∠ABC=180°-64°=116°,∵点D关于的对称点在边上,∴∠D=∠AEC=116°,故答案为B.【点睛】本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.8、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.9、B【分析】首先根据一元二次方程根的判别式确定m的取值范围,进而可得m+2的取值范围,然后再根据反比例函数的性质可得答案.【详解】∵一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,∴△=b2﹣4ac=16+16m>0,∴m>﹣1,∴m+2>1,∴反比例函数y=的图象所在的象限是第一、三象限,故选:B.【点睛】本题主要考查了反比例函数的性质以及一元二次方程根的判别式,关键是正确确定m的取值范围.10、A【分析】根据特殊角三角函数值,可得答案.【详解】解:∵△ABC中,∠C=90°,∠B=30°,∴∠A=90°-30°=60°.cosA=cos60°=.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角三角函数值是解题关键.二、填空题(每小题3分,共24分)11、π【分析】根据题意可得AD=AE=,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE的长度.【详解】解:∵AD半径画弧交BC边于点E,AD=
∴AD=AE=,
又∵AB=1,
∴∴∠AEB=45°,∵四边形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,
故可得弧DC的长度为==π,
故答案为:π.【点睛】此题考查了弧长的计算公式,解答本题的关键是求出∠DAE的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.12、,.【解析】试题分析:,∴,∴,.故答案为,.考点:解一元二次方程-因式分解法.13、1【分析】由题意可得m2-3m=2020,进而可得2m2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m为一元二次方程x2-3x-2020=0的一个根,∴m2-3m-2020=0,∴m2-3m=2020,∴2m2-6m=4040,∴2m2-6m+2=4040+2=1.故答案为:1.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键.14、1.【解析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,1πr=,解得:r=1cm.故答案是1.考点:圆锥的计算.15、.【分析】连接BC,构造直角三角形ABC,由正三角形及菱形的对角线平分对角的性质,得出∠BCD=α=30°,∠ABC=90°,从而α+β=∠ACB,分别求出△ABC的边长,【详解】如图,连接BC,∵上图是由10个小正三角形构造成的网格图,∴任意相邻两个小正三角形都组成一个菱形,∴∠BCD=α=30°,∠ABC=90°,∴α+β=∠ACB,∵每个小正三角形的边长均为1,∴AB=2,在Rt△DBC中,,∴BC=,∴在Rt△ABC中,AC=,∴sin(α+β)=sin∠ACB=,故答案为:.【点睛】本题考查了构造直角三角形求三角函数值,解决本题的关键是要正确作出辅助线,明确正弦函数的定义.16、【解析】试题分析:列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为.故答案为.考点:概率公式.17、【解析】过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.18、【解析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,,即展开图是一个半圆,点是展开图弧的中点,,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,,,即蚂蚁爬行的最短距离是.故答案为:.【点睛】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.三、解答题(共66分)19、电线杆AB的高为8米【解析】试题分析:过C点作CG⊥AB于点G,把直角梯形ABCD分割成一个直角三角形和一个矩形,由于太阳光线是平行的,就可以构造出相似三角形,根据相似三角形的性质解答即可.试题解析:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG==6,∴AB=AG+GB=6+2=8(米),故电线杆AB的高为8米20、(1)15套;(2)37.5【分析】(1)设购买A种设备x套,则购买B种设备6x套,根据总价=单价×数量结合计划投入99000元,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量结合实际投入资金与计划投入资金相同,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】(1)设能购买多媒体设备套,则购买显示屏6x套,根据题意得:解得:答:最多能购买多媒体设备15套.(2)由题意得:设,则原方程为:整理得:解得:,(不合题意舍去)∴.答:的值是37.5.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,找出关于x的一元一次不等式;(2)找准等量关系,正确列出一元二次方程.21、(1)见解析;(2).【分析】(1)通过证明,可得,可得结论;(2)由平行线的性质可证即可证,由和勾股定理可求MC的长,通过证明,可得,即可求MN的长.【详解】证明:(1)∵DB平分,,且,(2),且,且,,且【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键.22、(1)见解析;(2)(4,4),(3,1);(3).【分析】(1)根据题意作线段CD即可;(2)根据题意画出图形即可解决问题;(3)因为点C的运动轨迹是直线,所以点P的运动轨迹也是直线,找到当C坐标为(0,0)时,P'的坐标,利用待定系数法即可求出关系式.【详解】(1)如图所示,线段CD即为所求,(2)如图所示,P点坐标为(4,4),C点坐标为(3,1),故答案为:(4,4),(3,1).(3)如图所示,∵点C的运动轨迹是直线,∴点P的运动轨迹也是直线,当C点坐标为(3,1)时,P点坐标为(4,4),当C点坐标为(0,0)时,P'的坐标为(3,2),设直线PP'的解析式为,则有,解得,∴P点横、纵坐标之间的关系为,故答案为:.【点睛】本题考查网格作图和一次函数的解析式,熟练掌握旋转变换的特征是解题的关键.23、(1)证明见解析;(2)证明见解析;(3).【分析】(1)连接CD,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC,根据直径的性质得出∠ABC=90°,根据B是EF的中点得出AB=EF,即∠BAC=∠AFE,则得出三角形相似;(3)根据三角形相似得出,根据AF和CF的长度得出AC的长度,然后根据EF=2AB代入求出AB和EF的长度,最后根据Rt△AEF的勾股定理求出AE的长度.【详解】解:(1)如答图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠BAC=∠EAB+∠BAC=90°∴EA是⊙O的切线;(2)如答图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°.∴∠CBA=∠ABC=90°∵B是EF的中点,∴在Rt△EAF中,AB=BF∴∠BAC=∠AFE∴△EAF∽△CBA.(3)∵△EAF∽△CBA,∴∵AF=4,CF=2,∴AC=6,EF=2AB.∴,解得AB=2∴EF=4∴AE=.【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.24、(1),;(2)t=;(3)或或【分析】(1)如图过点M作MD⊥AC于点D,利用相似三角形的性质求出MD即可解决问题;(2)连接PM,交AC于D,,当四边形MNPC为菱形时,ND=,即可用t表示AD,再结合第一问的相似可以用另外一个含t式子表示AD,列方程计算即可;(3)分别用t表示出AP、AQ、PQ,再分三种情况讨论:①当AQ=AP②当PQ=AQ③当PQ=AP,再分别计算即可.【详解】解:⑴过点M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论