版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.52.如图,点G是△ABC的重心,下列结论中正确的个数有()①;②;③△EDG∽△CBG;④.A.1个 B.2个 C.3个 D.4个3.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣24.如图,在△ABC中,D、E分别是BC、AC上的点,且DE∥AB,若S△CDE:S△BDE=1:3,则S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:205.要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位 B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位 D.向右平移1个单位,再向下平移2个单位6.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数()A.135° B.120° C.115° D.100°7.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr28.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形9.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.10.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30° B.40° C.50° D.60°二、填空题(每小题3分,共24分)11.若实数、满足,则以、的值为边长的等腰三角形的周长为.12.计算:__________.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.14.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)15.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.16.将抛物线y=(x+2)25向右平移2个单位所得抛物线解析式为_____.17.已知扇形的半径为6,面积是12π,则这个扇形所对的弧长是_____.18.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.三、解答题(共66分)19.(10分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.(1)求出k与b的值,并指出x的取值范围?(2)为了使每月获得价格利润1920元,商品价格应定为多少元?(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?20.(6分)计算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°21.(6分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同(1)求这两年该区投入教育经费的年平均增长率(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元22.(8分)综合与实践在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.探究展示:勤奋小组很快找到了点、的位置.如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.问题解决:(1)按勤奋小组的这种折叠方式,的长度为.(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.(3)在(2)的条件下,求出的长.23.(8分)如图,已知是的直径,是的弦,点在外,连接,的平分线交于点.(1)若,求证:是的切线;(2)若,,求弦的长.24.(8分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,BD=4,则DE的长为.25.(10分)如图所示,是的直径,为弦,交于点.若,,.(1)求的度数;(2)求的长度.26.(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有________台.
参考答案一、选择题(每小题3分,共30分)1、D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=1.故选D.2、D【分析】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质定理判断即可.【详解】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=BC,∴△DGE∽△BGC,∴=,①正确;,②正确;△EDG∽△CBG,③正确;,④正确,故选D.【点睛】本题考查三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题关键.3、C【解析】试题分析:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选C.考点:一元二次方程的解4、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,进而得到CD:BC=1:4,然后根据DE∥AB可得△CDE∽△CAB,利用相似三角形的性质得到,然后根据面积和差可求得答案.【详解】解:过点H作EH⊥BC交BC于点H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故选:B.【点睛】本题综合考查相似三角形的判定与性质,三角形的面积等知识,解题关键是掌握相似三角形的判定与性质.5、A【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x2的顶点坐标是(0,0),
则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.
故选:A.【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.6、C【详解】解:根据图形的折叠可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故选C.考点:1.平行四边形的性质2.图形的折叠的性质.7、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.8、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.9、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.10、C【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵将△ABC绕点C顺时针旋转得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故选C.【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.二、填空题(每小题3分,共24分)11、1.【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣2=0,解得x=4,y=2.①4是腰长时,三角形的三边分别为4、4、2,∵4+4=2,∴不能组成三角形,②4是底边时,三角形的三边分别为4、2、2,能组成三角形,周长=4+2+2=1.所以,三角形的周长为1.12、【分析】先计算根号、负指数和sin30°,再运用实数的加减法运算法则计算即可得出答案.【详解】原式=,故答案为.【点睛】本题考查的是实数的运算,中考必考题型,需要熟练掌握实数的运算法则.13、60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.14、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、12﹣4【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为12﹣4.考点:1、旋转的性质;2、菱形的性质.16、y=x2−1【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−1向右平移2个单位,得:y=(x+2−2)2−1,即y=x2−1.故答案是:y=x2−1.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.17、4π.【分析】根据扇形的弧长公式解答即可得解.【详解】设扇形弧长为l,面积为s,半径为r.∵,∴l=4π.故答案为:4π.【点睛】本题考查了扇形面积的计算,弧长的计算,熟悉扇形的弧长公式是解题的关键,属于基础题.18、【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.三、解答题(共66分)19、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.【分析】(1)根据待定系数法求解即可;根据单价不低于进价(16元)和销售件数y≥0可得关于x的不等式组,解不等式组即得x的取值范围;(2)根据每件的利润×销售量=1,可得关于x的方程,解方程即可求出结果;(3)设每月利润为W元,根据W=每件的利润×销售量可得W与x的函数关系式,然后根据二次函数的性质解答即可.【详解】解:(1)由题意,得:,解得:,∴y=﹣30x+960,∵y≥0,∴﹣30x+960≥0,解得:x≤32,又∵x≥16,∴x的取值范围是:16≤x≤32;答:k=﹣30,b=960,x取值范围为:16≤x≤32;(2)由题意,得:(﹣30x+960)(x﹣16)=1,解得:x1=x2=24,答:商品的定价为24元;(3)设每月利润为W元,由题意,得:W=(﹣30x+960)(x﹣16)=﹣30(x﹣24)2+1.∵﹣30<0,∴当x=24时,W最大=1.答:商品价格应定为24元,最大利润是1元.【点睛】本题是方程和函数的应用题,主要考查了待定系数法求一次函数的解析式、一元二次方程的解法和二次函数的性质等知识,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题的关键.20、(1)2-;(2)-.
【解析】(1)直接利用特殊角的三角函数值代入即可求出答案;(2)直接利用特殊角的三角函数值代入即可求出答案.【详解】解:(1)2sin30°-tan60°+tan45°
=2×-+1
=2-;
(2)tan245°+sin230°-3cos230°
=×12+()2-3×()2
=+-
=-.
故答案为:(1)2-;(2)-.【点睛】本题考查特殊角的三角函数值,正确记忆相关数据是解题的关键.21、(1)20%;(2)15552万元【分析】(1)设该县投入教育经费的年平均增长率为,根据题意列式计算即可;(2)由(1)可知增长率,列式计算即可.【详解】解:(1)设该县投入教育经费的年平均增长率为,根据题得,解得(舍去)答:该县投入教育经费的年平均增长率为20%(2)因为2018年该县投入教育经费为12960万元,由(1)可知增长率为20%,所以2019年该县投入教育经费为万元答:预算2019年该县投入教育经费15552万元【点睛】本题考查的是一元二次方程的实际应用,能够读懂题意列式计算是解题的关键.22、(1)3;(2)见解析;(3)【分析】(1)由勾股定理可求AB的长,由折叠的性质可得AC=AE=6,CD=DE,∠C=∠BED=90°,由勾股定理可求解;
(2)如图所示,当DE∥AC,∠EDB=∠ACB=90°,即可得到答案;
(3)由折叠的性质可得CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,可得DE=CD=CF=EF,通过证明△DEB∽△CAB,可得,即可求解.【详解】(1)∵∠ACB=90°,AC=6,BC=8,
∴,
由折叠的性质可得:△ACD≌△AED,
∴AC=AE=6,CD=DE,∠C=∠BED=90°,
∴BE=10-6=4,
∵BD2=DE2+BE2,
∴(8-CD)2=CD2+16,
∴CD=3,
故答案为:3;
(2)如图3,当DE∥AC,△BDE是直角三角形,
(3)∵DE∥AC,
∴∠ACB=∠BDE=90°,
由折叠的性质可得:△CDF≌△EDF,
∴CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,
∴EF=DE,
∴DE=CD=CF=EF,
∵DE∥AC,
∴△DEB∽△CAB,
∴,
∴,
∴DE=,
∴【点睛】此题考查几何变换综合题,全等三角形的性质,折叠的性质,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质进行推理是解题的关键.23、(1)证明见解析;(2).【分析】(1)连接OC,利用直径所对的圆周角是直角,结合半径相等,利用等边对等角,证得∠OCE=90,即可证得结论;(2)连接DB,证得△ADB为等腰直角三角形,可求得直径的长,再根据勾股定理求出AC即可.【详解】(1)连接OC,∵是的直径,∴∠ACB=90,∵OA=OC,∴∠OAC=∠OCA,∵∠BCE=∠BAC,∴∠BCE=∠BAC=∠OCA,∵∠OCA+∠OCB=90,∴∠BCE+∠OCB=90,∴∠OCE=90,
∴CE是⊙O的切线;(2)连接DB,∵AB是⊙O的直径,
∴∠ADB=90,∵CD平分∠ACB,∴,∴,∴△ADB为等腰直角三角形,
∴,∵AB是⊙O的直径,∴∠ACB=90,∴.【点睛】本题考查了圆的切线的判定方法,圆周角定理,勾股定理的应用,掌握直径所对的圆周角为直角是解题的关键.24、探究:见解析;拓展:.【分析】感知:先判断出∠BAP=∠DPC,进而得出结论;探究:根据两角相等,两三角形相似,进而得出结论;拓展:利用△BDP∽△CPE得出比例式求出CE,结合三角形内角和定理证得AC⊥AB且AC=AB;最后在直角△ADE中利用勾股定理来求DE的长度.【详解】解:感知:∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孕妇学校课外活动
- 《通山隆鼎丽都》课件
- 2024年四川省宜宾市中考化学真题【附答案】
- 兴奋状态的护理
- 《公众聚集场所消防》课件
- 《听听那冷雨大学语》课件
- 包皮手术科普
- 清平乐村居获奖课件
- 小儿尖足推拿治疗
- 大咯血应急预案的护理
- 2024年度Logo设计及品牌形象重塑合同
- 中小学学校国家智慧教育云平台应用项目实施方案
- 2024-2025学年广东省佛山市S6高质量发展联盟高二上学期期中联考数学试卷(含答案)
- 2024-2030年铝型材行业市场深度调研及前景趋势与投资战略研究报告
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 通信工程施工方案
- 初中英语研修方案
- 化工厂拆除施工方案
- 海南自贸港优化营商环境条例7大亮点解读课件
- 中国邮政储蓄银行2024年下半年社会招聘高频难、易错点500题模拟试题附带答案详解
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
评论
0/150
提交评论