




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,将二次函数y=3的图象向左平移2个单位,所得图象的解析式为()A.y=3−2 B.y=3+2 C.y=3 D.y=32.如图所示的几何体的左视图是()A. B. C. D.3.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为()A.6 B.10 C.4 D.6或104.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10355.为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为()A. B. C. D.6.如图,为的直径,弦于点,,,则的半径为()A.5 B.8 C.3 D.107.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.38.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d9.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.10.“泱泱华夏,浩浩千秋.于以求之?旸谷之东.山其何辉,韫卞和之美玉……”这是武汉16岁女孩陈天羽用文言文写70周年阅兵的观后感.小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式传播.他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.1211.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.8 B.16 C.24 D.3212.如图,点O是矩形ABCD的对角线AC的中点,交AD于点M,若,,则OB的长为A.4 B.5 C.6 D.二、填空题(每题4分,共24分)13.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.14.关于的一元二次方程有实数根,则实数的取值范围是________.15.如图,在中,,点是边的中点,,则的值为___________.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.17.方程的一次项系数是________.18.若,则=___________.三、解答题(共78分)19.(8分)解方程:3(x﹣4)2=﹣2(x﹣4)20.(8分)如图,我国海监船在处发现正北方向处有一艘可疑船只,正沿南偏东方向航行,我海监船迅速沿北偏东方向去拦裁,经历小时刚好在处将可疑船只拦截,已知我海监船航行的速度是每小时海里,求可疑船只航行的距离.21.(8分)如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OACD,求阴影部分的面积;(2)求证:DEDM.22.(10分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.23.(10分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.(1)求k的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.24.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.(,,结果精确到)25.(12分)综合与实践:如图,已知中,.(1)实践与操作:作的外接圆,连结,并在图中标明相应字母;(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:若,求扇形的面积.26.如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.
参考答案一、选择题(每题4分,共48分)1、D【分析】先确定抛物线y=3x1的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移1个单位所得对应点的坐标为(-1,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x1的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(-1,0),∴平移后的抛物线解析式为:y=3(x+1)1.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2、D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.3、D【分析】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形.【详解】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形,如果视图是长方形的面积是6,另外一种视图的面积也是6,如果视图是长方形的面积是10,另外一种视图的面积也是10.故选:D【点睛】考核知识点:三视图.理解圆柱体三视图特点是关键.4、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.5、D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率可以作为概率的估计值即可得答案.【详解】∵凸面向上的次数为420次,凸面向下的次数为580次,∴凸面向下的频率为580÷(420+580)=0.58,∵大量重复试验下,随机事件发生的频率可以作为概率的估计值,∴估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为0.58,故选:D.【点睛】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键.6、A【分析】作辅助线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r,则OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.7、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.8、A【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、c:a=d:b⇒bc=ad,故错误D、b:c=a:d⇒ad=bc,故错误.故选A.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.9、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10、B【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【详解】解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合题意,舍去).故选:B.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,
∴=0.5,
解得:m=1.
故选:B.【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率.12、B【分析】由平行线分线段成比例可得,由勾股定理可得,由直角三角形的性质可得OB的长.【详解】解:四边形ABCD是矩形,,,,且,,在中,点O是斜边AC上的中点,故选B.【点睛】本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.二、填空题(每题4分,共24分)13、80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.14、且【解析】根据根的判别式△≥0且二次项系数求解即可.【详解】由题意得,16-4≥0,且,解之得且.故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.15、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.16、2﹣2【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.17、-3【解析】对于一元二次方程的一般形式:,其中叫做二次项,叫做一次项,为常数项,进而直接得出答案.【详解】方程的一次项是,∴一次项系数是:故答案是:.【点睛】本题主要考查了一元二次方程的一般形式,正确得出一次项系数是解题关键.18、【分析】把所求比例形式进行变形,然后整体代入求值即可.【详解】,,;故答案为.【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.三、解答题(共78分)19、x1=4,x2=.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.20、70海里.【分析】过作于点,分别利用三角函数解和,即可进行求解.【详解】过作于点,根据题意得:(海里),在中,(海里),在中,(海里),答:可疑船只航行的距离为70海里.【点睛】本题考查了解直角三角形的应用,用到的知识点是方向角含义、三角函数的定义,关键是根据题意画出图形,构造直角三角形.21、(1)4-π;(2)参见解析.【解析】试题分析:(1)连接OD,由已知条件可证出三角形ODC是等腰直角三角形,OD的长度知道,∠DOB的度数是45度,这样,阴影的面积就等于等腰直角三角形ODC的面积减去扇形ODB的面积.(2)连接AD,由已知条件可证出AD垂直平分BM,从而得到DM=DB,又因为弧DE=弧DB,DE=DB,所以DE就等于DM了.试题解析:(1)连接OD,∵CD是⊙O切线,∴OD⊥CD∵OA="CD"=,OA=OD∴OD=CD=∴△OCD为等腰直角三角形∠DOC=∠C=45°S阴影=S△OCD-S扇OBD=××-.(2)连接AD.∵AB是⊙O直径∴∠ADB=∠ADM=90°又∵弧ED=弧BD∴ED="BD"∠MAD=∠BAD∴△AMD≌△ABD∴DM="BD"∴DE=DM.如图所示:考点:圆的性质与三角形综合知识.22、(1)2(2)8【解析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN的面积.【详解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面积为36,点M为BC的中点∴△ABM的面积为:36÷2=18∵△ADN和△ABM的相似比为∴∴=8考点:相似三角形的判定与性质23、(1)且;(2)见解析,M(3,4);(3)△ABM的面积有最大值,【分析】(1)根据题意得出△=(1-2k)2-4×k×(1-3k)=(1-4k)2>0,得出1-4k≠0,解不等式即可;
(2)y=k(x2-2x-3)+x+1,故只要x2-2x-3=0,那么y的值便与k无关,解得x=3或x=-1(舍去,此时y=0,在坐标轴上),故定点为(3,4);
(3)由|AB|=|xA-xB|得出|AB|=||,由已知条件得出,得出0<||≤,因此|AB|最大时,||=,解方程即可得到结果.【详解】解:(1)当时,函数为一次函数,不符合题意,舍去;当时,抛物线与轴相交于不同的两点、,△,,,∴k的取值范围为且;(2)证明:抛物线,,抛物线过定点说明在这一点与k无关,显然当时,与k无关,解得:或,当时,,定点坐标为;当时,,定点坐标为,∴M不在坐标轴上,;(3),,,,,,最大时,,解得:,或(舍去),当时,有最大值,此时的面积最大,没有最小值,则面积最大为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度工伤人员伤残评定及赔偿协议
- 2025年度集体合同协商中的劳动争议处理
- 2025年度幼儿园保安聘用合同标准范本
- 二零二五年度专业护工针对心血管疾病病人护理合同
- 2025年度中小企业发展基金借款连带担保人合同
- 2025年度单位食堂承包及员工满意度提升协议
- 2025年度知识产权股份代持许可使用协议
- 2025年度国际文化交流项目合作诚意金协议
- 2025年度工程监理个人劳动合同(工程质量安全管理)
- 2025年度航空航天器复合材料维修合同
- 桩基承载力自平衡法检测方案资料
- 2025云南昆明空港投资开发集团招聘7人高频重点提升(共500题)附带答案详解
- 简单的路线图(说课稿)2024-2025学年三年级上册数学西师大版
- 成都市2024-2025学年度上期期末高一期末语文试卷(含答案)
- 2025年教育局财务工作计划
- Unit 5 Now and Then-Lesson 3 First-Time Experiences 说课稿 2024-2025学年北师大版(2024)七年级英语下册
- 《中国心力衰竭诊断和治疗指南2024》解读
- 中小学智慧校园建设方案
- 中国食物成分表2020年权威完整改进版
- 【MOOC】影视鉴赏-扬州大学 中国大学慕课MOOC答案
- 危险性较大的分部分项工程清单安全管理措施
评论
0/150
提交评论