人教版数学中考复习-挑战三角形填空压轴(二)_第1页
人教版数学中考复习-挑战三角形填空压轴(二)_第2页
人教版数学中考复习-挑战三角形填空压轴(二)_第3页
人教版数学中考复习-挑战三角形填空压轴(二)_第4页
人教版数学中考复习-挑战三角形填空压轴(二)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学中考复习——挑战三角形填空压轴(二)1.如图所示,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB交BC于点D,点D到AB的距离DE=3cm,则线段BC的长为.2.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=100°,则∠BCA的度数为.3.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为.4.如图,在等腰△ABD中,∠A=32°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为.5.在Rt△ABC中,∠A=90°,AB=AC,BC=20,D、E分别是AB和AC的中点.请完成下列探究:(1)如图1,若点M是边BC中点,则DM=;(2)如图2,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN和ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.6.已知△ABC为等边三角形,D为边AC上一点,延长BC至E,使CE=CD=1,连接DE,则DE等于.7.已知一个三角形三边的长分别为,,,则这个三角形的面积是.8.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示.它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是40,tan∠1=,则小正方形的面积是.9.如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是.10.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=10,BC=16,则EF的长是.11.如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为.12.如图,已知Rt△ABC中,∠ABC=90°,△ABC的周长为17,斜边上中线BD长为.则Rt△ABC的面积为.13.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,如果正方形A、B、C、D的边长分别为3,4,1,2.则最大的正方形E的面积是.14.如图,在△ABC中,∠ABC=90°,过点C作CD⊥AC,且CD=AC,连接BD,若S△BCD=,则BC的长为.15.如图,在△ABC中,∠BAC=90°,AB=AC=2,点D,E分别在BC,AC上(点D不与点B重合),且∠ADE=45°,若△ABD是等腰三角形,则AE=.16.如图所示,在△ABC中,AD是∠BAC的平分线,G是AD上一点,且AG=DG,连接BG并延长BG交AC于E,又过C作AD的垂线交AD于H,交AB为F,则下列说法:①D是BC的中点;②BE⊥AC;③∠CDA>∠2;④△AFC为等腰三角形;⑤连接DF,若CF=6,AD=8,则四边形ACDF的面积为24.其中正确的是(填序号).17.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,以下结论:①∠DBM=∠CDE;②S△BDE=S四边形BMFE;③AC=2DF.其中正确结论的序号是.18.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC,若AC=10,则四边形ABCD的面积为.19.如图,四边形ABCD中,AB=AD,∠BAD=90°,连接AC,BD交于点E,∠CBD=90°,若点E为AC的中点,CD=,则四边形ABCD的面积为.20.如图,在Rt△ABC中,∠C=90°,点D在BC上,点E为Rt△ABC外一点,且△ADE为等边三角形,∠CBE=60°,若BC=7,BE=4,则△ADE的边长为.21.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;⑤∠APB=∠ACB,其中正确的判断有.22.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于.23.如图,△ABC中,AB=BC,∠ABC=120°,E是线段AC上一点,连接BE并延长至D,连接CD,若∠BCD=120°,AB=2CD,AE=7,则线段CE长为.24.如图,已知△ABC中,AB=AC,点D为△ABC外一点,连接BD、CD、DA,∠ADB=∠DBC=120°,取AB的中点E,连接DE,若CD=10,则DE等于.25.如图,△ABC中,AC的垂直平分线DE分别交BC于点E,交AC于点D,连接BD,AB=AD,∠CED=45°+∠BAC,△ABD的面积为54,则线段BD的长为.26.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤…,若第1个等腰直角三角形的直角边为1,则第2020个等腰直角三角形的面积为.27.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为.28.如图,AB∥CD,∠BCD=90°,AB=1,BC=CD=2,E为边AD上中点,则BE=.29.如图,在平面直角坐标系中,将边长为1的正方形OABC绕O点顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕O点连续旋转2021次得到正方形OA2021B2021C2021,则点A2021的坐标为.30.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC的最大值为.参考答案1.解:∵在Rt△ABC中,∠C=90°,∠CAB=60°,∴∠B=180°﹣∠C﹣∠CAB=30°,∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠DAC=BAC=30°,∴∠B=∠BAD,∴BD=AD,∵AD平分∠BAC,∠C=90°,点D到AB的距离DE=3cm,∴CD=DE=3cm,∵在Rt△DCA中,∠C=90°,∠DAC=30°,CD=3cm,∴AD=2CD=6cm,∴BD=AD=6cm,∴BC=CD+BD=3cm+6cm=9cm,故答案为:9cm.2.解:如图所示:∵AO、BO、CO是△ABC三个内角的平分线,∴∠BAO=∠CAO,∠ABO=∠CBO,∠BCO=∠DCO,在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠D,又∵∠BAC=100°,∴∠CAO==,又∵AD=AO,∴∠D=∠AOD,又∵∠CAO=∠D+∠AOD,∴∠D===25°,∴∠CBO=25°,∴∠CBA=50°,又∵∠BAC+∠ABC+∠BCA=180°,∴∠BCA=180°﹣100°﹣50°=30°,故答案为30°.3.解:过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.4.解:∵AD=AB,∠A=32°,∴∠ABD=∠ADB=(180°﹣∠A)=74°,由作图可知,EA=EB,∴∠ABE=∠A=32°,∴∠EBD=∠ABD﹣∠ABE=74°﹣32°=42°,故答案为:42°.5.解:(1)∵∠A=90°,AB=AC,BC=20,∴2AC2=BC2=202,∴AC=10,∵D,M分别是AB,BC的中点,∴DM=AC=5;(2)如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=;当∠MON=90°时,∵△DOE∽△EFM,∴=,∵MF=BC﹣BM﹣FC=20﹣3﹣5=12,∴EM==13,∴DO=,故答案为:或.6.解:如图,过点C作CF⊥DE于点F,∵△ABC为等边三角形,∴∠ACB=60°,∵CE=CD=1,∴∠E=∠CDE=30°,∴EF=CE=,∴DE=2EF=.故答案为:.7.解:∵+=5+10=15,=15,∴:+=,∴该三角形为直角三角形,∴这个三角形的面积是:××=.故答案为:.8.解:如图所示:根据tan∠1=,可设AB=x,BC=3x,由勾股定理得:,∵大正方形的面积是40,∴=40,解得:x=2或x=﹣2(舍去),∴AB=2,BC=6,∴,∴四个三角形的面积之和=4×6=24,∴小正方形的面积=40﹣24=16.故答案为16.9.解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×4=2,∴EG=AG=×2=1,∴DF=1.故答案为:1.10.解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故答案为:3.11.解:△ABC中,∠C=90°,CA=CB,AB=6根据勾股定理得2CB2=AB2,∴CB=3,∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB∴∠DEA=90°=∠C∴△CAD≌△EAD(AAS)∴AC=AE=3,DE=CD∴EB=AB﹣AE=6﹣3故△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB=6﹣3+3=6.12.解:∵Rt△ABC斜边上中线BD长为,∴AC=2BD=7,∵△ABC的周长为17∴AB+BC=17﹣AC=17﹣7=10,∴(AB+BC)2=100,即AB2+BC2+2AB•BC=100,∵AB2+BC2=AC2=72=49,∴2AB•BC=51,∴S△ABC=AB•BC=,故答案为.13.解:由勾股定理得,正方形F的面积=正方形A的面积+正方形B的面积=32+42=25,同理,正方形G的面积=正方形C的面积+正方形D的面积=22+12=5,∴正方形E的面积=正方形F的面积+正方形G的面积=30,故答案为:30.14.解:过点D作DM⊥BC交BC延长线于点M,∵CD⊥AC,∠ABC=90°,∴∠ACB+∠MCD=90°,∠ACB+∠BAC=90°,∴∠BAC=∠MCD,∵CD=AC,∴△ABC≌△CMD(AAS),∴BC=DM,∴S△BCD=×BC×DM=BC2=,∴BC=3,故答案为3.15.解:∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,BC==2,由题意点D不与点B重合,分两种情况:①BD=AD时,∠BAD=∠B=45°,如图1所示:∴∠ADC=∠B+∠BAD=45°+45°=90°,∴AD⊥BC,∵AB=AC,∴BD=CD=BC=,∴AD=BC=CD,∵∠ADE=45°,∴∠CDE=90°﹣45°=45°=∠ADE,∴DE平分∠ADC,∴AE=CE=AC=1;②BD=AB=2时,如图2所示:∵∠B=45°,∴∠BAD=∠BDA=(180°﹣45°)=67.5°,∵∠ADE=45°,∴∠CDE=180°﹣67.5°﹣45°=67.5°,∴∠CED=180°﹣∠C﹣∠CDE=67.5°,∴∠CDE=∠CED,∴CE=CD=BC﹣BD=2﹣2,∴AE=AC﹣CE=2﹣(2﹣2)=4﹣2;综上所述,若△ABD是等腰三角形,则AE的长为1或4﹣2,故答案为:1或4﹣2.16.解:①假设结论成立,则△ABC是等腰三角形,显然不可能,故①不符合题意;②只有∠ABE+∠BAE=90°时,该结论才成立,故②不符合题意;③∵∠ADC=∠1+∠ABD,∠1=∠2,∴∠ADC>∠2,故③符合题意;④∵∠1=∠2,AD=AD,∠AHF=∠AHC=90°,∴△AHF≌△AHC(ASA),∴AF=AC,故④符合题意;⑤∵AD⊥CF,∴S四边形ACDF=•AD•CF=×6×8=24.故⑤符合题意;故答案为:③④⑤.17.解:①设∠EDC=x,则∠DEF=90°﹣x∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∵BD=DE,∴∠DBM=∠DBE﹣∠MBE=45°+x﹣45°=x.∴∠DBM=∠CDE,故①正确;③在△BDM和△DEF中,,∴△BDM≌△DEF(AAS),∴BM=DF,∵∠ABC=90°,M是AC的中点,∴BM=AC,∴DF=AC,即AC=2DF;故③正确.②由③知△BDM≌△DEF(AAS)∴S△BDM=S△DEF,∴S△BDM﹣S△DMN=S△DEF﹣S△DMN,即S△DBN=S四边形MNEF.∴S△DBN+S△BNE=S四边形MNEF+S△BNE,∴S△BDE=S四边形BMFE,故②正确;综上所述,正确的结论有:①②③.故答案是:①②③.18.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N,∵∠BAD=∠BCD=90°,∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=10;∴2a2=100,a2=50,所以四边形ABCD的面积为50.故答案为50.19.解:过A作AF⊥BD于F,如图所示:∵点E是AC的中点,∴CE=AE,∵AB=AD,∴AF⊥BD,∵∠CBD=90°,∴BC∥AF,∠CBE=∠AFE=90°,在△CBE和△AFE中,,∴△CBE≌△AFE(AAS),∴BC=AF,∵AB=AD,∠BAD=90°,∴BD=2AF=2BC,∵∠CBD=90°,CD=,∴BC2+BD2=CD2,∴BC2+(2BC)2=15,∴BC=(负值舍去),∴AF=BC=,BD=2BC=2,∴四边形ABCD的面积=S△ABD+S△CBD=2+=6,故答案为:6.20.解:在BC的延长线上取点F,使得∠AFD=60°,∵△ADE是等边三角形,∴AD=DE=AE,∠ADE=60°,∵∠ADB=∠AFD+∠DAF=∠ADE+∠EDB,∴∠DAF=∠EDB,在△AFD和△DBE中,,∴△AFD≌△DBE(AAS),∴FD=BE=4,AF=BD,设CF=x,则CD=4﹣x,BD=7﹣(4﹣x)=3+x,∵∠ACB=90°,∴∠ACF=90°,∴∠CAF=90°﹣60°=30°,∴AF=2CF=2x,∴2x=x+3,解得:x=3,∴CF=3,AC=3,∴CD=1,∴AD===2,故答案为:2.21.解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB,③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,又∵PG∥AD,∴∠FPC=∠DCP,∴FP=FC,⑤无法得出∠APB=∠ACB,故⑤错误;故①②③④都正确.故答案为:①②③④.22.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴S△ABC=S△ABD+S△DBC=×AB×DE+×BC×DF==60,∴DF=DE=4.故答案为:4.23.解:作BM⊥AC,垂足为M,∵AB=BC,∠ABC=120°,∴∠A=∠ACB=30°,AM=CM,∴BM=AB,∵AB=2CD,∴BM=CD.∵∠DCB=120°,∴∠DCE=∠DCB﹣∠ACB=120°﹣30°=90°,∴∠BMC=∠DCE=90°.在△EMB和△ECD中,,∴△MEB≌△CED(AAS),∴ME=CE.设CE=x,则ME=x,AM=AE﹣ME=7﹣x.∵AM=CM,∴7﹣x=2x,∴x=,∴线段CE长为.故答案为.24.解:延长AD、CB交于点G,过点A作AH∥BD交BC的延长线于点H,延长DE交AH于N,∵∠ADB=∠DBC=120°,∴∠GDB=∠GBD=60°,∴△BDG是等边三角形,∴BG=DG=BD,∠G=60°,∵AH∥BD,∴∠H=∠GBD=60°,∴△AGH是等边三角形,∴AH=AG=GH,∵AB=AC,∴∠ABC=∠ACB,∴∠ABG=∠ACH,∴△ABG≌△ACH(AAS),∴BG=CH,∴DG=CH,∴AG﹣DG=GH﹣CH,即GC=AD,∵AN∥BD,∴∠NAE=∠DBE,∠ENA=∠EDB,∵E是AB的中点,∴AE=BE,∴△NAE≌△DBE(AAS),∴BD=AN,DE=EN=DN,在△GDC与△AND中,,∴△GDC≌△AND(SAS),∴ND=DC=10,∴DE=DN=5.故答案为:5.25.解:如图,作AH⊥BD于H交BC于M,作AK⊥CB交CB的延长线于K,作MP⊥AC于P.∵AB=AD,AH⊥BD,∴∠DAH=∠ABC,设∠DAH=α,则∠CED=45°+α,∵ED⊥AC,∴∠EDC=90°,∴∠C=45°﹣α,∴∠AMB=∠MAC+∠C=45°,∵AM垂直平分线段BD,∴MB=MD,∵MH⊥BD,∴∠BMH=∠DMH=45°,∴BH=MH=DH,设BH=MH=DH=a,则DM=a,∵AK⊥C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论