版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工业设计信息交互中运用图像识别技术的意义与策略,机械工程论文内容摘要:工业设计中信息交互是一个重要的环节,将图像辨别应用于工业设计之中能够有效传递视觉文化,带给用户更为优质的使用体验,有效保障了工业设计的质量。基于此,本文阐述了信息交互的相关概念,分析了工业设计中图像辨别技术的应用,最终得出了图像辨别技术能够有效应用于工业产品的外观设计、工业设计的传播与推广以及工业设计的图像分类。以期有效提升工业设计的效率,保障工业产品的质量。本文关键词语:图像辨别技术;工业设计;信息交互;应用;RESEARCHONTHEAPPLICATIONOFIMAGERECOGNITIONTECHNOLOGYININFORMATIONEXCHANGEOFINDUSTRIALDESIGNZhouWeiAbstract:Informationinteractionisanimportantlinkinindustrialdesign.Theapplicationofimagerecognitioninindustrialdesigncaneffectivelytransfervisualculture,bringusersmorequalityexperience,andeffectivelyguaranteethequalityofindustrialdesign.Basedonthis,thispaperexpoundstherelevantconceptsofinformationinteraction,analyzestheapplicationofimagerecognitiontechnologyinindustrialdesign,andfinallycomestotheconclusionthatimagerecognitiontechnologycanbeeffectivelyappliedtotheappearancedesignofindustrialproducts,thedisseminationandpromotionofindustrialdesign,andtheimageclassificationofindustrialdesign,soastoeffectivelyimprovetheefficiencyofindustrialdesignandensurethequalityofindustrialproducts.1相关理论简述1.1信息交互的概念信息交互主要是指人类与人类之间、人类与物体之间通过各种各样的手段来完成不同信息的传递,进而实现交互的目的。详细而言便是自然以及社会之中各类资料、数据、情报以及技术知识能够通过某种载体来完成及时的传递和沟通,而信息交互属于一种文字信息载体[1]。现代社会科学技术水平有了长足的进步,各类数字产品应运而生,不同于实际产品对于外观样式的高度重视,数字产品主要是对用户的目的及行为较为关注,并基于此来实现信息交互,进而使用户能够收获上佳的体验。随着时代的不断变迁,信息交互已经过传统的工具以及武器演变成了有着复杂工艺的各类先进设备,最为常见的便是通过互联网所提供的便利来实现信息交互。1.2图像辨别技术的概念图像辨别技术主要是指通过计算机来处理、分析以及理解图形,进而在不同形式之下完成既定目的的一种技术。是基于深度学习算法的实践应用。图像辨别技术主要包含了人脸辨别以及商品辨别两种技术。华而不实人脸辨别主要被应用于身份验证、安全检查以及移动支付领域;商品辨别则是被应用于对各类商品进行流通之时,尤其是智能零售柜以及无人收货等领域。在进行图像辨别时,主要有下面几个流程:采集图像、预处理图像、提取图像特点、实现图像辨别。当下市场中应用较为广泛的图像辨别软件主要有国外的有康耐视以及国内的海深科技、图智能等。2图像辨别技术在工业设计信息交互中的应用意义设计能够弥补科技和人之间的缺口,设计是能够将情感(新奇感、独立感、安全感、感性、自信心、气力感)、人机工程(易用性、安全性、舒适性)、美学(视觉、听觉、嗅觉、触觉)结合起来的因素[2]。技术指的是采用先进的技术或加工质量很高的传统性技术,为产品赋予足够的功能,使产品持续正常工作,并保持良好的技术能力。在进行工业设计时,相关人员会根据本身的经历体验以及视觉感受来让产品在材料、形态、构造、装饰、色彩以及外表加工等方面有着全新的品质,并且通过各类宣传、展示以及包装等手段来对产品的视觉效果进行评价。就本质而言,工业设计并不是最终的目的,而是为了实现人类其它目的而使用信息交互的一种手段。图像辨别在机器视觉工业领域中最典型的应用就是二维码的辨别,二维码就是我们平常常见的条形码中最为普遍的一种。将大量的数据信息存储在这小小的二维码中,通过条码对产品进行跟踪管理,能够方便的对各种材质外表的条码进行辨别读取,大大提高了当代化生产的效率。由此能够看出,图像辨别技术应用于工业设计信息交互之中,能够有效提升信息交互质量及效率,保证工业设计所获取的信息更为准确,为后续工业设计产品的诞生奠定坚实的基础[3]。3图像辨别技术在工业设计信息交互中的应用思路当下工业设计已经融入了人们日常生活中的不同领域,有着较为广泛的应用范围。例如,设计普通工业用品、设计交通运输工具、设计商业广告形式、设计各类建筑等。工业设计将工业本身与各类技术以及设计进行了高度的融合,让民众的生活水平有了较大幅度的提升,并且劳动生产率也有了长足的进步,人们的文化视野也有所丰富。但华而不实仍然存在着一定的问题,例如部分工业产品的设计与制造效率较低,产品的合格率不符合相关标准,产品品相不知足人们的基本需求等。而通过图像辨别技术的应用,则能够有效解决这类问题,相关人员在进行工业设计时能够将本身的想法具体表现出在产品之中,进而带给用户更具个性化的产品体验。详细而言,图像辨别技术在工业设计信息交互中的应用主要有下面几个方面:3.1图像辨别技术应用于工业产品的外观设计图像辨别技术最为重要的作用便是更为便捷地完成人类与产品之间的交互,而将其应用于外观设计之中,有效提升交互的效率及效果。最为典型的便是2021年所发布的iPhoneX手机,其将图像辨别技术作为了华而不实的核心技术,手机的外观屏幕采用了异型曲面屏,并且在屏幕中存在着一定的开孔,这样一来就能够严格遵循相应的交互逻辑,进而实现人脸支付等一系列的功能。在该手机中的图像辨别技术主要流程是对人脸进行辨别、对面部的特征进行提取、对信息进行比照分析进而得出结论[4]。手机的人脸辨别技术不同于普通手机,其开孔部位存在着红外摄像头、深感摄像头以及泛光感应元件,还有前置摄像头与点阵投影器。依次经过红外拍脸,构造光与点阵投影器获取3D精到准确模型,转化为数学表示出式,存入手机的安全区域。通过这样的方式能够让产品的安全性得以提升,并且让图像辨别技术和工业设计进行了更为深切进入的融合,这样一来工业设计方案能够更为便捷地实现,工业设计人员也能够找到全新的延展方向。3.2图像辨别技术应用于工业产品的传播与推广工业设计的目的是通过信息交互来全面了解用户的实际需求,进而不断地对现有的产品进行完善。而要想有效提升信息交互质量,就必须做好工业产品的传播与推广。通过图像辨别技术的应用,让相关人员对用户的实际情况以及周围的使用环境有一个全方位的了解,进而在产品形式设计以及内容设计方面进行创新,以此来不断提升工业产品在市场中的占有率。较为典型的例子便是二维码系统[5],在扫描大部分工业产品所附带的二维码之后,系统经过用户同意便可获取用户所在的地址及偏好等特征,进而通过统计分析得出平均结果,进而为设计人员后续的设计方向提供理论上的参考。3.3图像辨别技术应用于工业设计的图像分类3.3.1对图像进行细粒度分类这是在分类的基础上进行的基本分类,还有更为具体的子分类,如鸟类种类、汽车样式、犬类品种等。当前,在行业和现实生活中有着广泛的业务需求和应用场景。与粗粒度图像相比,细粒度图像具有更为类似的外观和特征,并且在采集经过中存在姿态、透视、光照、遮挡和背景干扰等问题,导致类间差异大、类内差异小的现象,使得分类愈加困难。3.3.2多标签图像分类在现实生活中,图像往往包含多个类别的对象。多标签图像分类能够同时判定图像中能否包含这些内容,进而更好地解决现实生活中的问题。单标签图像分类是指每幅图像对应一个类别标签。根据目的分类的个数,单标签图像分类可分为两类和多类。多标签图像分类主要采用图像辨别技术中的多标签决策树算法。该算法利用决策树技术处理多标签数据,基于多标签熵的信息增益准则递归构造决策树。树构造包括非叶节点、分支和叶节点。采用决策树模型进行分类时,特征属性由非叶节点表示,特征属性在一定范围内的输出由非叶节点之间的分支表示,类别由叶节点存储。其计算思想是:首先计算每个特征的信息增益,选择增益最大的特征将样本分成左右两个子集,进行递归直至知足停止条件,构造决策树。对于新的测试样本,沿着根节点到叶节点遍历一条途径,并计算叶节点样本子集中每个标签为0和1的概率。假如概率超过0.5,则包括标签。在遍历到不同叶节点的所有途径之后,能够确定所有标签信息。当前,图像分类的任务在很大程度上依靠于监督学习,即每个样本都有相应的标签。通过深层神经网络,我们能够不断学习每个标签对应的特征,最终实现分类。在这种情况下,数据集的容量和标签的质量往往对模型的性能起着决定性的作用。3.3.3无监督图像分类假如将神经网络视为在轨道上运行的F1赛车,则数据集是为其持续提供动力的能量。假如没有高质量的数据集作为基础,就无法驱动神经网络进行训练。高质量的数据集自然会给注释带来困难。据统计,在一幅图像中标注一个对象类别大约需要2到3秒钟。然而,在实际应用中,数据集往往包含数万幅图像,因而整个标注经过将变得异常漫长。十分是在细粒度分类和多标签分类任务中,标签代价随着目的数目和辨别难度的增加呈指数增长。无监督图像分类主要采用PCA和t-SNE算法。PCA(PrincipalComponentAnalysis)算法是机器学习领域中一种典型的旋转数据集方式方法,其旋转特征不具有统计相关性。通过数据集的旋转,我们能够根据新特征的重要性构造子集来解释数据,进而构造新的数据集表示。作为近年来广泛应用的数据分析算法,t-SNE的主要思想是寻找数据的二维表示,并尽可能保持数据点之间的距离,然后尽量使原始特征空间中较近的点更近,而原始特征空间中较远的点更远。它关注的是相互距离较近的点,而不是较远的点。原则上,上述两种数据集转换方式方法复杂度较高,且算法目的过于明确,使得抽象的低维数据中不存在二次信息,而这些二次信息可能是区分更高层次层次数据的主要因素。因而,这两种算法大多用于网络训练前的数据预处理阶段,为后续的操作提供相应的先验知识。4结束语综上所述,图像辨别技术已经被应用到生活中的各个领域,对于工业设计而言能够有效保障信息交互效果,让设计人员认识到不断变化的用户需求,进而合理调整设计方案,这样一来用户的体验也会更佳。以下为参考文献[1]张建渊.基于图像辨别模板匹配技术的工业检测系统设计[J].仪器仪表用户,2020,27(03):14-16.[2]
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度在线借款合同电子签名法律适用研究3篇
- 二零二五年度某IT服务公司与企业客户就IT运维服务合同2篇
- 二零二五年度加工承揽合同标的加工要求和质量标准3篇
- 二零二五年度城市广场草坪承包与公共艺术合同3篇
- 二零二五年度基桩检测与监测系统合同3篇
- 2025年度安徽省劳动合同解除与赔偿合同范本3篇
- 二零二五年度新型房产租赁及转售一体化服务合同2篇
- 豆包制作课程设计
- 二零二五年度供水企业安全生产培训合同3篇
- 路基路面沉井课程设计
- 基于深度学习的网络钓鱼邮件识别技术研究
- 融资成本视角下的船舶融资租赁模式研究
- 感冒中医理论知识课件
- 2023年希望杯数学培训100题-六年级(含答案)
- 一年级科学人教版总结回顾2
- 个人住房贷款提前还款月供及节省利息EXCEL计算
- 第五单元《圆》教材解析-人教版数学六年级上册
- 患者突发昏迷应急预案演练脚本-
- 智能机器人技术导论PPT完整全套教学课件
- 危险性较大的分部分项工程清单 及安全管理措施
- 中职英语语文版(2023)基础模块1 Unit 1 The Joys of Vocational School 单元测试题(含答案)
评论
0/150
提交评论