《总体取值规律的估计》设计_第1页
《总体取值规律的估计》设计_第2页
《总体取值规律的估计》设计_第3页
《总体取值规律的估计》设计_第4页
《总体取值规律的估计》设计_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《总体取值规律的估计》教学设计【教学目标】1.理解并掌握统计图表的画法及应用.2.结合实例,能用样本估计总体的取值规律.【教学重点】掌握频率分布直方图的画法及其应用【教学难点】掌握频率分布直方图的画法及其应用【课时安排】1课时【教学过程】认知初探1.画频率分布直方图的步骤(1)求极差:极差是一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5~12组,为了方便起见,一般取等长组距,并且组距应力求“取整”.(3)将数据分组.(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:横轴表示分组,纵轴表示eq\f(频率,组距).小长方形的面积=组距×eq\f(频率,组距)=频率.各小长方形的面积和等于1.2.其它统计图表统计图表主要应用扇形图直观描述各类数据占总数的比例条形图和直方图直观描述不同类别或分组数据的频数和频率折线图描述数据随时间的变化趋势思考1:为什么要对样本数据进行分组?[提示]不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.思考2:频数分布表与频率分布直方图有什么不同?[提示]频数分布表能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各个小组数据在样本容量中所占比例大小的角度来表示数据分布的规律.小试牛刀1.频率分布直方图中,小长方形的面积等于()A.组距B.频率C.组数D.频数B解析:根据小长方形的宽及高的意义,可知小长方形的面积为一组样本数据的频率.2.把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A.79%B.80%C.18%D.82%D[79%+1%+2%=82%.]3.将容量为100的样本数据按由小到大排列分成8个小组,如表所示,但第3组被墨汁污染,则第三组的频率为()组号12345678频数1013141513129A. B.C. D.解析:选A.第三组的频数为100-(10+13+14+15+13+12+9)=14.故第三组的频率为eq\f(14,100)=.4.某高速公路移动雷达测速检测车在某时段对某段路过往的400辆汽车的车速进行检测,根据检测的结果绘制出如图所示的频率分布直方图,根据直方图的数据估计400辆汽车中时速在区间[90,110)的约有____________辆.280解析:由图可知,时速在区间[80,90),[110,120)的频率为+×10=,所以时速在区间[90,110)的频率为1-=.所以时速在区间[90,110)的车辆数为400×=280.频率分布直方图的画法[例1]为了了解学校高一年级男生的身高情况,选取一个容量为60的样本(60名男生的身高),分组情况如下(单位:cm):分组[,[,[,[,]频数62127m频率a(1)求出表中a,m的值.(2)画出频率分布直方图.【解析】(1)由题意得:6+21+27+m=60,所以m=6.a==,所以a=.作出频率分布直方图如图所示.方法总结1.在列频率分布表时,极差、组距、组数有如下关系:(1)若eq\f(极差,组距)为整数,则eq\f(极差,组距)=组数;(2)若eq\f(极差,组距)不为整数,则eq\f(极差,组距)的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.当堂练习1为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表和频率分布直方图,解答下列问题:分组频数频率[,4[,[,10分组频数频率[,16[,]合计50(1)填充频率分布表的空格(将答案直接填在表格内);(2)补全频率分布直方图.解析:(1)分组频数频率[,4[,8[,10[,16[,]12合计50(2)频率分布直方图如图所示:频率分布直方图的应用【例2】为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[解](1)频率分布直方图是以面积的形式反映了数据落在各小组内的频率大小的,因此第二小组的频率为eq\f(4,2+4+17+15+9+3)=.又因为第二小组的频率=eq\f(第二小组的频数,样本容量),所以样本容量=eq\f(第二小组的频数,第二小组的频率)=eq\f(12,=150.(2)由频率分布直方图可估计该校高一年级学生的达标率为eq\f(17+15+9+3,2+4+17+15+9+3)×100%=88%.方法总结频率分布直方图的性质(1)因为小矩形的面积=组距×eq\f(频率,组距)=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)样本容量=频数/相应的频率.当堂练习2某校高一某班的某次数学测试成绩(满分为100分)如下56,58,62,63,63,65,66,68,69,71,72,72,73,74,75,76,77,78,79,95,98其中[80,90)内的成绩缺失.频率分布直方图也受到了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)内的频率及全班人数.(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.【解析】(1)分数在[50,60)的频率为×10=.由题意知,分数在[50,60)之间的频数为2,所以全班人数为.分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为其它统计图表的综合应用[问题探究]条形图、扇形图、折线图、频率分布直方图这四种统计图中,哪些可以从图中看出原始数据?[提示]折线图.[例3]家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是________.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=________,n=________;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.[解析](1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③.(2)①抽样调査的家庭总户数为:80÷8%=1000(户),m%=eq\f(200,1000)×100%=20%,m=20,n%=eq\f(60,1000)×100%=6%,n=6.②C类户数为:1000-(80+510+200+60+50)=100,条形统计图补充如下:③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类.④180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收站.[答案](1)③(2)①206②③④见解析方法总结各类统计图的特点:条形统计图反映各组数据的频数或频率,扇形统计图反映各组数据占总数的比例,折线统计图反映数据随时间的变化趋势.当堂练习3据报道,去年某咨询公司对1500个家庭进行了关于奶粉市场的调查,下图是关于每月购买奶粉袋数的有关数据,则每月购买1袋奶粉的比率同每月购买2袋奶粉的比率合计为()A.% B.%C.% D.%解析:选B.根据折线图,每月购买1袋奶粉和每月购买2袋奶粉的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论