




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是()A.4 B. C. D.2.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②AB=BP;③PN=PG;④PM=PF;⑤若连接PE,则△PEG∽△CMD.其中正确的个数为()A.5个 B.4个 C.3个 D.2个3.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.4.把多项式分解因式,结果正确的是()A. B.C. D.5.如图,是一个几何体的三视图,则这个几何体是()A.长方体 B.圆柱体 C.球体 D.圆锥体6.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.将抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2 C.y=3(x+3)2﹣3 D.y=3x2﹣68.反比例函数的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A. B. C. D.9.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm10.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个二、填空题(每小题3分,共24分)11.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是_____.12.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.13.如图,四边形的项点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为__________.14.已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为_____cm.16.如果记,表示当时的值,即;表示当时的值,即;表示当时,的值,即;那么______________.17.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.18.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P从点A出发,沿折线AB﹣BO向终点O运动,在AB上以每秒5个单位长度的速度运动,在BO上以每秒3个单位长度的速度运动;点Q从点O出发,沿OA方向以每秒个单位长度的速度运动.P,Q两点同时出发,当点P停止时,点Q也随之停止.过点P作PE⊥AO于点E,以PE,EQ为邻边作矩形PEQF,设矩形PEQF与△ABO重叠部分图形的面积为S,点P运动的时间为t秒.(1)连结PQ,当PQ与△ABO的一边平行时,求t的值;(2)求S与t之间的函数关系式,并直接写出自变量t的取值范围.20.(6分)如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.(1)当点F与点A重合时,点G恰好到达点D,此时x=,当EF⊥BC时,x=;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;(3)当S=15时,求此时x的值.21.(6分)如图,是圆外一点,是圆一点,交圆于点,.(1)求证:是圆的切线;(2)已知,,求点到直线的距离.22.(8分)先化简,再求值:x﹣1(1﹣x)﹣x(1﹣),其中x=1.23.(8分)如图,二次函数的图象与一次函数的图象交于点及点(1)求二次函数的解析式及的坐标(2)根据图象,直按写出满足的的取值范围24.(8分)如图①,抛物线与轴交于,两点(点位于点的左侧),与轴交于点.已知的面积是.(1)求的值;(2)在内是否存在一点,使得点到点、点和点的距离相等,若存在,请求出点的坐标;若不存在,请说明理由;(3)如图②,是抛物线上一点,为射线上一点,且、两点均在第三象限内,、是位于直线同侧的不同两点,若点到轴的距离为,的面积为,且,求点的坐标.25.(10分)某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?26.(10分)解方程组:;化简:.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据扇形面积公式计算即可.【详解】解:设扇形的半径为为R,由题意得,解得R=4.故选A.【点睛】本题考查了扇形的面积公式,R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长.那么扇形的面积为:.2、B【分析】根据折叠的性质得到,于是得到,求得是直角三角形;设AB=x,则AD=2x,由相似三角形的性质可得CP=x,可求BP=PG=x=PN,可判断②③,由折叠的性质和平行线的性质可得∠PMF=∠FPM,可证PF=FM;由,且∠G=∠D=90°,可证△PEG∽△CMD,则可求解.【详解】∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=×180°=90°,∴△CMP是直角三角形;故①符合题意;∵AD=2AB,∴设AB=x,则AD=BC=2x,∵将矩形ABCD对折,得到折痕MN;∴AM=DM=AD=x=BN=NC,∴CMx,∵∠PMC=90°=∠CNM,∠MCP=∠MCN,∴△MCN∽△NCP,∴CM2=CN•CP,∴3x2=x×CP,∴CP=x,∴∴AB=BP,故②符合题意;∵PN=CP﹣CN=x-x=x,∵沿着MP折叠,使得AM与EM重合,∴BP=PG=x,∴PN=PG,故③符合题意;∵AD∥BC,∴∠AMP=∠MPC,∵沿着MP折叠,使得AM与EM重合,∴∠AMP=∠PMF,∴∠PMF=∠FPM,∴PF=FM,故④不符合题意,如图,∵沿着MP折叠,使得AM与EM重合,∴AB=GE=x,BP=PG=x,∠B=∠G=90°∴,∵,∴,且∠G=∠D=90°,∴△PEG∽△CMD,故⑤符合题意,综上:①②③⑤符合题意,共4个,故选:B.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,折叠的性质,勾股定理,直角三角形的性质,矩形的性质等知识,利用参数表示线段的长度是解题的关键.3、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.4、B【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:;完全平方公式:;【详解】解:,故选B.【点睛】本题考查了分解因式,熟练运用平方差公式是解题的关键5、B【分析】根据三视图的规律解答:主视图表示由前向后观察的物体的视图;左视图表示在侧面由左向右观察物体的视图,俯视图表示由上向下观察物体的视图,由此解答即可.【详解】解:∵该几何体的主视图和左视图都为长方形,俯视图为圆∴这个几何体为圆柱体故答案是:B.【点睛】本题主要考察简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.6、D【分析】根据题意得出△DEF∽△BCF,进而得出,利用点E是边AD的中点得出答案即可.【详解】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵点E是边AD的中点,∴AE=DE=AD,∴.故选D.7、A【解析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【详解】抛物线向右平移3个单位,得到的抛物线的解析式是故选A.【点睛】本题主要考查二次函数的图象平移规律:左加右减,上加下减.8、C【分析】根据反比例函数的性质直接判断即可得出答案.【详解】∵反比例函数y=中,当x>0时,y随x的增大而减小,
∴k-1>0,
解得k>1.
故选C.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.9、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.10、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.4,
故口袋中白色球的个数可能是40×0.4=16个.
故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、点O在⊙P上【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:由勾股定理,得OP==5,d=r=5,故点O在⊙P上.故答案为点O在⊙P上.【点睛】此题考查点与圆的位置关系的判断.解题关键在于要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.12、25【详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.13、6【分析】根据AB//CD,得出△AOB与△OCD相似,利用△AOB与△OCD的面积分别为8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得S△COB=12,设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)进行解答即可.【详解】解:∵AB//CD,∴△AOB∽△OCD,又∵△ABD与△ACD的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)则OB=|a|、OC=|b|∴|a|×|b|=12即|a|×|b|=24∴|a|×|b|=6又∵,点E在第三象限∴k=xy=a×b=6故答案为6.【点睛】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.14、2或1【解析】分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=1cm.∴AB与CD之间的距离为1cm或2cm.故答案为2或1.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.15、【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【详解】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为16.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16、【分析】观察前几个数,,,,依此规律即可求解.【详解】∵,,∴,∵,,∴,,∴,∵,∴2019个1.故答案为:.【点睛】此题考查了分式的加减运算法则.解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.17、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【详解】如图,连接BF,
∵EF是AB的垂直平分线,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.18、1【分析】设PN=a,PM=b,根据P点在第二象限得P(﹣a,b),根据矩形的面积公式即可得到结论.【详解】解:设PN=a,PM=b,∵P点在第二象限,∴P(﹣a,b),代入y=中,得k=﹣ab=﹣1,∴矩形PMON的面积=PN•PM=ab=1,故答案为:1.【点睛】本题考查了反比例函数的几何意义,即S矩形PMON=三、解答题(共66分)19、(1)当与的一边平行时,或;(2)【分析】(1)先根据一次函数确定点、的坐标,再由、,可得、,由此构建方程即可解决问题;(2)根据点在线段上、点在线段上的位置不同、自变量的范围不同,进行分类讨论,得出与的分段函数.【详解】解:(1)∵在中,令,则;令,则∴,∴,①当时,,则∴∴②当时,,则∴∴∴综上所述,当与的一边平行时,或.(2)①当0≤t≤时,重叠部分是矩形PEQF,如图:∴∴∴∴,,∴;②当<t≤2时,如图,重叠部分是四边形PEQM,∴,,,,易得∴,∴;③当2<t≤3时,重叠部分是五边形MNPOQ,如图:∴∴,∴,∴,,,∴;④当3<t<4时,重叠部分是矩形POQF,如图:∵,,∴,∴综上所述,.【点睛】此题主要考查了相似三角形的判定与性质以及矩形和梯形的面积求法等知识,利用分类讨论的思想方法是解题的关键.20、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;(2)分两种情况:①当点F在AB上时,作GH⊥BC于H,则四边形ABHG是矩形,证明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面积公式和三角形面积公式即可得出答案;②当点F在AD上时,作FM⊥BC于M,则FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面积公式和三角形面积公式即可得出答案;(3)当x2+9x+12=15时,当x2﹣21x+102=15时,分别解方程即可.【详解】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;故答案为:6;10;(2)∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)当x2+9x+12=15时,解得:x=﹣6±(负值舍去),∴x=﹣6+;当x2﹣21x+102=15时,解得:x=14±(不合题意舍去);∴当S=15时,此时x的值为﹣6+.【点睛】本题考查二次函数的动点问题,题目较难,解题时需注意分类讨论,避免漏解.21、(1)详见解析;(2).【分析】(1)作于点,结合,得,进而得,即可得到结论;(2)作于点,设圆的半径为,根据勾股定理,列出关于的方程,求出的值,再根据三角形的面积法,即可得到答案.【详解】(1)作于点,∵,∴,∵,∴,∵∴,即:,∴是圆的切线.(2)作于点,设圆的半径为,则,在中,,解得:,∴,∵,∴,即点到直线的距离为:.【点睛】本题主要考查圆的切线的判定和性质定理以及勾股定理,添加辅助线,构造直角三角形,是解题的关键.22、【分析】原式去括号并利用单项式乘以多项式法则计算,合并得到最简结果,将x的值代入计算即可求出值.【详解】解:原式=x﹣1+3x﹣x+x1=x1+x﹣1,当x=1时,原式=+﹣1=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23、(1)或,点B的坐标为(4,3);(2)当时,kx+b≥(x-2)2+m【分析】(1)先将点A(1,0)代入求出m的值,即可得出二次函数的解析式,再将代入二次函数的解析式即可求出的坐标;(2)根据图象和A、B的交点坐标可直接求出的x的取值范围.【详解】解:(1)∵二次函数y=(x-2)2+m的图象经过点A(1,0)∴解得:∴二次函数的解析式为解得:(不合题意,舍去)∴点B的坐标为(4,3)(2)由图像可知二次函数y=(x-2)2+m的图像与一次函数y=kx+b的图象交于点A(1,0)及点B(4,3)当时,kx+b≥(x-2)2+m【点睛】本题考查用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.24、(1)-3;(2)存在点,使得点到点、点和点的距离相等;(3)坐标为【分析】(1)令,求出x的值即可求出A、B的坐标,令x=0,求出y的值即可求出点C的坐标,从而求出AB和OC,然后根据三角形的面积公式列出方程即可求出的值;(2)由题意,点即为外接圆圆心,即点为三边中垂线的交点,利用A、C两点的坐标即可求出、的中点坐标,然后根据等腰三角形的性质即可得出线段的垂直平分线过原点,从而求出线段的垂直平分线解析式,然后求出AB中垂线的解析式,即可求出点的坐标;(3)作轴交轴于,易证,从而求出,利用待定系数法和一次函数的性质分别求出直线AC、BP的解析式,和二次函数的解析式联立,即可求出点P的坐标,然后利用SAS证出,从而得出,设,利用平面直角坐标系中任意两点之间的距离公式即可求出m,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泰州学院《短视频制作A》2023-2024学年第二学期期末试卷
- 四川成都市成华区重点名校2025届5月初三下学期英语试题三模试题含答案
- 浙江体育职业技术学院《地理空间数据库》2023-2024学年第二学期期末试卷
- 吉安市泰和县2025届五下数学期末联考模拟试题含答案
- 电容器在新能源发电领域的应用考核试卷
- 智慧医疗解决方案考核试卷
- 玻璃光学镀膜设计与性能考核试卷
- 电力系统谐波治理考核试卷
- 汽车制造设备升级与改造考核试卷
- 电机在电力行业能源市场分析与管理决策优化的应用考核试卷
- 神经内科护理案例分析
- 2025年安徽省中考模拟英语试题(原卷版+解析版)
- 【初中语文】第11课《山地回忆》课件-2024-2025学年统编版语文七年级下册
- 入团考试模拟100题及答案
- 2025陕西西安市长安城乡建设开发限公司招聘17人高频重点模拟试卷提升(共500题附带答案详解)
- 2025届河南资本集团投资公司校园招聘启动笔试参考题库附带答案详解
- 2025-2030年中国阿尔茨海默症药物市场运行状况及发展潜力分析报告
- 2025年河南职业技术学院单招职业技能测试题库必考题
- OBE理念背景下开展细胞生物学课堂教学互动的探索实践
- 2025年中国氢氧化钙行业发展现状及市场前景分析预测报告
- 二年级语文下册 语文园地四 同步练习(含答案)
评论
0/150
提交评论