版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
动量守恒定律及其应用一.几个概念:系统:相互作用的一组物体通常称为系统。系统内至少有2个物体。内力:系统内物体间的相互作用力外力:系统内的物体受到系统外的物体的作用力。
系统所受的冲量是指该系统内所有各个物体所受外力的冲量的矢量和因为内力是成对的,大小相等,方向相反,作用时间相同,所以整个系统内的内力的总冲量必定为零。即ΣfΔt=0I=I1+I2系统所受的冲量系统的动量定理动量定理不仅适用于单个物体,同样也适用于系统ΣFΔt+ΣfΔt=ΣPt-ΣPo
式中F表示系统外力,f表示系统内力.整个系统内的内力的总冲量必定为零。即ΣfΔt=0
一个系统所受合外力的冲量,等于在相应时间内,该系统的总动量的变化。
ΣFΔt=ΣPt-ΣPo二.动量守恒定律的导出设想光滑水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,且v1>v2,它们动量的矢量和碰撞前的动量p=p1+p2=m1v1+m2v2经过一定时间m1
追上m2,并与之发生碰撞,设碰后二者的速度分别为v1’和v2’,此时它们的动量的矢量和.碰撞后的动量
p’=p1’+p2’=m1v1’+m2v2’碰撞时受力分析G1N1F21G2N2F12F21:2号球对1号球的作用力,F12:1号球对2号球的作用力.F21和F12大小相等,方向相反;作用时间相等。(第一组同学)根据根据牛顿第二定律和第三定律推导(参加培优班同学)从动量定理和牛顿第三定律出发导出证明过程(从动量定理和牛顿第三定律出发导出)
对1号球用动量定理F21t1=m1v’1-m1v1=P’1-P1对2号球用动量定理F12t2=m2v’2-m2v2=P’2-P2根据牛顿第三定律:F12=--F21;且t1=t2上述三式联立得m1v’1+m2v’2=m1v1+m2v2
即P’1+P’2=P1+
P2一个系统不受外力或所受外力的合力为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。数学表达式:
P=P’或
BBAABBAAvmvmvmvm’+’=+动量守恒定律的内容三、动量守恒定律的条件a、系统不受外力或系统所受的外力的合力为零。(理想条件和实际条件)b、系统所受外力的合力虽不为零,但比系统内力小得多。(近似条件)粗糙水平面三、动量守恒定律的条件c、系统所受外力的合力虽不为零,但在某个方向上的合外力为零,则在该方向上系统的总动量守恒。(单向条件)d、引导学生自己举例子说明单向近似守恒条件在水平轨道上放置一门有质量的炮车,发射炮弹,炮弹与轨道间摩擦不计,当炮身与水平方向成θ角发射炮弹。研究炮车和炮弹组成的系统动量守恒问题。地面变成粗糙
[例题3]如图所示,A、B两木块的质量之比为3:2,原来静止在平板小车C上,A、B间有一根被压缩了的轻弹簧,A、B与平板车的上表面间的动摩擦因素相同,地面光滑.当弹簧突然释放后,A、B在小车上滑动时有:[]A.A、B系统动量守恒B.A、B、C系统动量守恒C.小车向左运动D.小车向右运动BCAB
[例题4]质量为m的小球从光滑的半径为R的半圆槽顶部A由静止滑下,设槽与桌面无摩擦,则[]A.小球不可能滑到右边最高点;B.小球到达槽底时的动能小于mgR;C.小球升到最大高度时,槽速度为零;D.若球与槽有摩擦,则系统水平方向动量不守恒.BCBA
[例题5]木块B与水平面间的接触是光滑的,子弹A沿水平方向射入木块后,留在木块内,将弹簧压缩到最短.将子弹木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩至最短的整个过程中,动量是否守恒?为什么?
动量不守恒此过程中,系统受到墙给的向右的外力
[例题6]一列火车在水平直铁轨上做匀速运动,总质量为M,速度为V,某时刻后部有质量为m的一节车厢脱钩,司机未发觉,又继续行驶了一段距离,这期间机车的牵引力保持不变,并且各部分所受阻力跟运动速度无关.当司机发现时,后面脱钩的车厢的速度已减为V/3,此时火车前面部分的速度多大?
[例题7]一枚在空中飞行的导弹,质量为m,在某点速度的大小为v,方向水平向右.导弹在该点突然炸裂成两块,其中质量为m1的一块沿着v的反方向飞去,速度的大小为v1.求炸裂后另一块的速度v2.炸裂前炸裂后据动量守恒定律∴方向与v同向
瞬时性:v1和v2是两物体相互作用过程中前一时刻的速度.则是后一时刻的速度.
整体性:两物体在相互作用过程中每时每刻的总动量方向均相同.
相对性:等号两边的动量都必须相对同一参考系.矢量性:列式前一般要选定正方向.应用动量守恒定律解题的基本步骤1.分析系统由多少个物体组成,受力情况如何,判断动量是否守恒;2.规定正方向(一般以原速度方向为正),确定相互作用前后的各物体的动量大小、正负;3.由动量守恒定律列式求解.[例1]一质量为M的木块放在光滑的水平桌面上处于静止状态,一颗质量为m的子弹以速度v0沿水平方向击中木块,并留在其中与木块共同运动,则子弹对木块的冲量大小是()A、mv0B、C、mv0-D、mv0-BD典型问题一:子弹打木块模型
[例题2]一质量为M长为L的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,M>m.现以地面为参照系,给A和B以大小相等,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板.若已知A、B初速度大小为v0,求它们最后的速度的大小和方向.碰撞的特点:1.碰撞物体之间的作用时间短,一般只有百分之几秒,甚至千分之几秒.2.碰撞物体之间的作用力大,因此经过碰撞以后,物体的状态变化是十分显著的.设光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧。(动碰静)在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A、B分开,这时A、B的速度分别为?全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。弹性碰撞
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少量全部转化为弹性势能,
Ⅱ
状态系统动能最小而弹性势能最大;
Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
由动量守恒和能量(动能)守恒可以证明A、B的最终速度分别为:(学生演版)当m1=m2时,v1’=0;v2’=v1
质量相等,交换速度;当m1>m2时,v1’>0
;v2’>0
大碰小,一起跑;当m1>>m2时,v1’=v1
;v2’=2v1当m1<m2时,v1’<0
;v2’>0
小碰大,要反弹。当m1<<m2时,v1’=-v1
;v2’=0对弹性碰撞的讨论非弹性碰撞⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,
Ⅱ
状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴中的小;
Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;
因为全过程系统动能有损失(一部分动能转化为内能)。
满足规律:动量守恒。(动能不守恒)完全非弹性碰撞
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,
Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。A、B最终的共同速度为:
在完全非弹性碰撞过程中,系统的动能损失最大为
例题.质量为M的小车中挂有一单摆,摆球质量为m0,小车(和单摆)以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪个或哪些说法是可能发生的?[]Mmm0v
例题2.
甲、乙两球在水平光滑轨道上同方向运动,已知它们的动量分别是P甲=5kg·m/s,P乙=7kg·m/s.甲从后面追上乙,并发生碰撞,碰后乙球的动量变为P乙’=10kg·m/s.则它们的质量关系可能是A.M甲=M乙B.M乙=2M甲C.M乙=4M甲D.M乙=6M甲动量关系动能关系速度关系∴选CM3M2M13.在光滑水平面上,有一质量M1=20kg的小车,通过一根几乎不可伸长的轻绳与另一质量M2=25kg的拖车相连接,一质量M3=15kg的物体放在拖车的平板上,物体间的μ=0.2,开始时,拖车静止,绳未被拉紧,小车以v0=3m/s的速度前进.求:(1)三物体以同一速度前进时的速度大小;(2)物体在拖车平板上移动的距离(足够长).简析:人船模型动量守恒定律的综合应用典型问题应用动量守恒定律解题的基本步骤1.分析系统由多少个物体组成,受力情况如何,判断动量是否守恒;2.规定正方向(一般以原速度方向为正),确定相互作用前后的各物体的动量大小、正负;3.由动量守恒定律列式求解.
[例题1]质量为M=300kg的小船,长为L=3m,浮在静水中.开始时质量为m=60kg的人站在船头,人和船均处于静止状态.若此人从船头走到船尾,不计水的阻力,则船将前进多远?
解:人和船组成的系统在整个运动过程中,都不受水平方向外力作用,而在竖直方向,处于平衡状态,所以系统满足动量守恒条件.取向左为正方向,对人和船组成的系统,依动量守恒可得:
MS船
-m(L-S船)=0
解得S船
=mL/(M+m)
代入数据得S船=0.5m
你动我动、你快我快、你慢我慢、你停我停,你我速率和各自质量成正比.
[学生练习1]如图所示:质量为m长为a的汽车由静止开始从质量为M、长为b的平板车一端行至另一端时,汽车和平板车的位移大小各为多少?(水平地面光滑)解得:Sa=M(b-a)/M+mSb=m(b-a)/M+mmM[点拨]取向右为正方向,对人和船组成的系统,依动量守恒可得:
[学生练习]
质量为M的气球上有一质量为m的人,气球和人静止在离地高为h的空中.从气球上放下一架不计质量的软梯,为使人沿软梯安全滑至地面,则软梯至少应为多长?即:0=M(L-h)/t-mh/t解得:L=(M+m)h/M
[点拨]气球和人原静止于空中,合力为零,故系统动量守恒.取竖直向上为正方向,对人和气球组成的系统,依动量守恒可得:Lh
[学生练习3]
在光滑的水平面上有一辆质量为M的小车,车的两端各站着质量分别为m1和m2的人,三者原来皆静止,当两人相向运动时,小车向哪个方向运动?
[点拨]考虑两人和车组成的系统,合力为零,故系统动量守恒.应用等效思维的方法,依动量守恒定律可分析得:(1)若m1=m2,小车静止不动(2)若m1>m2,小车与m2的人运动方向相同(3)若m1<m2,小车与m1的人运动方向相同
[例题2]一个质量为M的斜面静止在光滑的水平面上,如图所示,有一质量为m的小物块由斜面的顶部无初速滑到底部,问斜面和小物块组成的系统动量是否守恒?若已知斜面底部面的长为L,斜面倾角为θ,求斜面移动的距离s?θs1s2bMm
解:斜面和小物块组成的系统在整个运动过程中都不受水平方向外力,故系统在水平方向上动量守恒.Ms/t-m(L-s)/t=0解得:s=mL/(M+m)[学生练习5]小车放在光滑的水平面上,将系绳子小球拉开到一定的角度,然后同时放开小球和小车,在以后的过程中:[]A.小球向左摆动时,小车也向左摆动,且系统动量守恒.
B.小球向右摆动时,小车也向右摆动,且系统动量守恒.
C.小球向左摆动到最高点,小球的速度为零而小车的速度不为零.
D.在任意时刻,小球和小车在水平方向的动量一定大小相等、方向相反.D
[学生练习6]质量为m的小球从光滑的半径为R的半圆槽顶部A由静止滑下,设槽与桌面无摩擦,则[]A.小球不可能滑到右边最高点;B.小球到达槽底时的动能小于mgR;C.小球升到最大高度时,槽速度为零;D.若球与槽有摩擦,则系统水平方向动量不守恒.BC[学生练习7]两物体的质量m1=2m2,放在光滑水平面上,当烧断细线后,弹簧恢复到原长时,两物体脱离弹簧时速度均不为零,两物体原来静止,则
A.两物体在脱离弹簧时速率最大
B.两物体在刚脱离弹簧时速率之比v1:v2=1:2
C.两物体的速率同时达到最大值
D.两物体在离开弹簧后同时达到静止
m1m2[变式]两物体的质量m1=2m2,两物体与水平面的摩擦因数为2=21
,当烧断细线后,弹簧恢复到原长时,两物体脱离弹簧时速度均不为零,两物体原来静止,则
A.两物体在脱离弹簧时速率最大
B.两物体在刚脱离弹簧时速率之比v1:v2=1:2C.两物体的速率同时达到最大值
D.两物体在离开弹簧后同时达到静止m1m2典型问题四:能量守恒问题
[例题]如图所示,光滑平行导轨MN、PQ水平放置,导轨间距为L,整个装置处在竖直向下的匀强磁场中,磁感应强度为B,导棒ab、cd的电阻都是r(其它电阻不计),质量都是m,现给ab导棒一个水平向右的冲量I,求整个运动过程中转化成的热能。abcdB答:I2/4m
解:设ab导棒受到水平向右的冲量后获得的速度为v0,则有
I=mv0①
由于ab棒切割磁感线运动,在回路中产生感应电流,磁场对ab棒的安培力水平向左,磁场对cd棒的安培力水平向右,使得ab棒向右作减速运动、cd棒向右作加速运动,最终两棒以共同速度v作匀速运动,但ab棒、cd棒组成的系统所受的合外力为零.由动量守恒定律,得
mv0=(m+m)v
②由①②解得
v=I/2m③
当ab棒、cd棒以共同速度运动时,回路的磁通量不变,没有感应电流,也不再产生热量.设从ab棒开始运动到ab棒、cd棒以共同速度运动的过程中产生的热量为Q,由能量转化和守恒定律,有
Q=mv02/2-(m+m)v2/2④联解①②③④得
Q=I2/4m
[例题4]如下图所示,a、b为两根相同的金属杆,质量均为m.金属导轨是光滑的,水平部分有竖直向上的匀强磁场.杆b原来静止于导轨的水平部分.杆a由高h处开始沿弧形导轨自由下滑.求:(1)杆a的最终运动速度是多少?(2)在两杆a、b的运动过程中,电路中产生的热量共有多少?解:(1)杆a由高h处沿弧形导轨自由下滑到水平导轨过程中,机械能守恒:a进入磁场后因切割磁感线产生感应电动势,由于电路闭合而产生感应电流,用右手定则判定是感应电流的方向(从上往下看)是逆时针的;用左手定则判定a受安培力方向向左,因而做减速运动;b受安培力方向向右,因而做加速运动.a和b组成的系统所受合外力为零,由动量守恒定律
mv0=(m+m)v
②由①②解得
v=v0/2=/2③这是a、b的共同速度,也是a的最终运动速度.
(2)当a、b以共同速度运动时,回路的磁通量不变,没有感应电流,也不再产生热量.所以从a开始运动到a、b以共同速度运动的过程中产生的热量,由能量转化和守恒定律及③式有
Q=mgh-(m+m)v2/2=mgh/2答(略)典型问题四:多过程分析
[
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版特许经营合同:连锁餐饮品牌授权与管理2篇
- 《工科概率统计》课件
- 声屏障安装安全课件
- 二零二四年度钢筋焊接技术服务外包合同2篇
- 2024年度房屋买卖合同中的贷款相关条款2篇
- 《生物学指标的测定》课件
- 《健康教育》课件2
- 高手进阶素材:课件
- 离婚诉讼中2024年度李尔与前妻关于证据提交与分享的合同
- 退休人员聘用合同范本
- 上海市虹口中学2025届高三压轴卷数学试卷含解析
- 长春工程学院《西方文明史》2023-2024学年第一学期期末试卷
- 北京市五十六中学2024-2025学年七年级上学期期中数学试题
- 8.1 国家好 大家才会好(教学课件)-八年级道德与法治上册同步备课系列(统编版)
- 管理学基础知识考试题库(附含答案)
- 2024年辅警招考时事政治考题及答案(168题)
- 2024年“国际档案日”档案知识竞赛题目和答案
- 2024年广西普法云平台考试答案
- 2023-2024学年广东省深圳市福田区八年级(上)期末英语试卷
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 英语 含解析
- 2024-2030年中国保理行业深度调研及发展战略建议报告
评论
0/150
提交评论