版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章函数、导数及其应用第五节函数的图象抓基础明考向提能力教你一招我来演练
[备考方向要明了]考
什
么会运用函数图象理解和研究函数的性质.怎
么
考1.函数的图象是近几年高考的热点;2.运用函数的图象研究函数的性质(单调性、奇偶性、最值)、图象的变换、图象的运用(方程的解、函数的零点、不等
式的解、求参数值)等问题是重点,也是难点;3.题型以选择题和填空题为主.一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点),最后:描点,连线.二、利用基本函数的图象作图1.平移变换(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象
向
(+)或向
(-)平移
单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象
向
(+)或向
(-)平移
单位而得到.左右a个上下b个2.对称变换(1)y=f(-x)与y=f(x)的图象关于
对称.(2)y=-f(x)与y=f(x)的图象关于
对称.(3)y=-f(-x)与y=f(x)的图象关于
对称.(4)要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方的部分以
为对称轴翻折到x轴上方,其余部分不变.(5)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于
的对称性,作出x<0时的图象.y轴x轴原点x轴y轴3.伸缩变换(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为
,
不变而得到.(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为
,
不变而得到.原来的A倍横坐标原来的倍纵坐标1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是 (
)A.(2,2)
B.(-1,1)C.(3,2) D.(2,3)解析:一次函数f(x)的图象过点点A(0,1),B(1,2),则f(x)=x+1,代入验证证D满足条件..答案:D2.函数y=x|x|的图象大致致是()解析:函数y=x|x|为奇函数,,图象关于于原点对称称.答案:A答案:B答案:右34.(教材习题改改编)为了得到函函数y=2x-3的图象,只只需把函数答案案::(0,++∞)5.若若关关于于x的方方程程|x|=a-x只有有一一个个解解,,则则实实数数a的取值值范范围围是是______函数数图图象象是是高高考考的的必必考考内内容容,,其其中中作作图图、、识识图图、、用用图图也也是是学学生生必必须须掌掌握握的的内内容容..(1)作图图一一般般有有两两种种方方法法::描描点点法法、、图图象象变变换换法法..特特别别是是图象象变变换换法法,,有有平平(2)识图图时时,,要要留留意意它它们们的的变变化化趋趋势势,,与与坐坐标标轴轴的的交交点点及及一些些特特殊殊点点,,特特别别是是对对称称性性(3)用图,主要是数形结合思想的应用.[精析析考考题题][例1]分别别画画出出下下列列函函数数的的图图(1)y=|lgx|;(2)y=2x+2(3)y=x2-2|x|-1.[巧练练模模拟拟]————————————(课堂堂突突破破保保分分题题,,分分分分必必保保!!)[冲关关锦锦囊囊][例2](2011··陕西西高高考考)设函函数数f(x)(x∈R)满足足f(-x)=f(x),f(x+2)=f(x),则则y=f(x)的图图象象可可能能是是()[自主主解解答答]表达达式式“f(x)=f(-x)””,说说明明函函数数是是偶偶函函数数,,表表达达式式“f(x+2)=f(x)””,说说明明函函数数的的周周期期是是2[答案案]BA.②②①①③③④④B.②②③③①①④④C.④④①①③③②②D.④④③③①①②②①y=2x恰好好符符合合,,∴∴第第三三个个图图象象对对应应①①;;第四四个个图图象象为为对对数数函函数数图图象象,,表表达达式式为为y=logax,且且a>1,②②y=log2x恰好好符符合合,,∴∴第第四四个个图图象象对对应应②②.∴四四个个函函数数图图象象与与函函数数序序号号的的对对应应顺顺序序为为④④③③①①②②.答案:D3.(2011·杭州六校校联考)函数y=2x-x2的图象大大致是()解析::画出函函数y=2x,y=x2的图象象可知知两个个函答案::A[冲关锦锦囊]“看图说说话”常用的的方法法有(1)定性分分析法法:通通过对对问题题进行行定性性的分分析,,从而而得出出图象象的上升升(或下降降)的趋势势,利利用这这一特特征分分析解解决问问题..(2)定量计计算法法:通通过定定量的的计算算来分分析解解决问问题..(3)函数模模型法法:由由所提提供的的图象象特征征,联联想相相关函函数模模型,,利用这这一函函数模模型来来分析析解决决问题题.[精析考考题][例3](2011·新课标标全国国卷)已知函函数y=f(x)的周期期为2,当x∈[-1,1]时f(x)=x2,那么么函数数y=f(x)的图象象与函函数y=|lgx|的图象象的交交点共共有()A.10个B.9个C.8个D.1个[答案]A[自主解解答]根据f(x)的性质质及f(x)在[-1,1]上的解解析式式可作作图如如下::可验证证当x=10时,y=|lg10|=1;0<x<10时,|lgx|<1;x>10时|lgx|>1.结合图图象知知y=f(x)与y=|lgx|的图象象交点点共有有10个.[巧练模模拟]———————(课堂突突破保保分题题,分分分必必保!!)解析::因为y=cosππx是偶函函数,,图象象关于于y轴对称称.所以,,本题题可转转化成成求函函数y=log3x与y=cosππx图象的的交点点个数数的问问题..作函数数图象象如图图,可可知有有三个个交点点,即即函数数f(x)图象上上关于于y轴对称称的点点有3对.答案::D5.(2012·长春模模拟)直线y=1与曲线线y=x2-|x|+a有四个个交点,,则a的取值值范围围是________.[冲关锦锦囊]1.函数数图象象形象象地显显示了了函数数的性性质(如单调调性、、奇偶偶性、最最值等等),为研研究数数量关关系问问题提提供了了“形”的直观观性,,因此此常用用函数数的图图象研研究函函数的的性质质.2.有些些不等等式问问题常常转化化为两两函数数图象象的上上、下下关系系来解.3.方程解的的个数常转转化为两熟熟悉的函数数图象的交交点个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电脑笔记本选购协议样本
- 2024客户服务合同的范文
- 城市轨道交通的运营安全与风险识别考核试卷
- 人脸识别技术在智能校园管理中的实际案例考核试卷
- 测绘公司正规合同模板
- 环保工程 保洁合同范例
- 园林公司聘用合同范例
- 信息系统安全评估与认证方案考核试卷
- 医疗废物转运政策解读
- 爱迪尔门锁甲方合同范例
- 人工智能驱动的数字经济发展与应用探索
- 手术室突发事件的紧急处理与应急演练
- 《心理健康教育》课件
- 《军事理论》课程标准
- 印刷品类售后服务方案
- 高标准农田施工工期承诺及保证措施
- 太阳能发电技术在航天与航空领域的应用
- 《中西方的节日》课件
- 《应用文书写作》课件
- MSOP(测量标准作业规范)测量SOP
- 【马工程笔记】第一章-民事诉讼法学概述
评论
0/150
提交评论