2023届山东省滨州市部分学校九年级数学第一学期期末统考模拟试题含解析_第1页
2023届山东省滨州市部分学校九年级数学第一学期期末统考模拟试题含解析_第2页
2023届山东省滨州市部分学校九年级数学第一学期期末统考模拟试题含解析_第3页
2023届山东省滨州市部分学校九年级数学第一学期期末统考模拟试题含解析_第4页
2023届山东省滨州市部分学校九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为A. B. C. D.02.下列约分正确的是()A. B. C. D.3.用求根公式计算方程的根,公式中b的值为()A.3 B.-3 C.2 D.4.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,5.已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是()A. B. C. D.6.已知抛物线,则下列说法正确的是()A.抛物线开口向下 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点为7.如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是()A. B. C. D.8.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则扇形BOC的面积为()A. B. C.π D.9.如图,在平行四边形中,,,那么的值等于()A. B. C. D.10.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t﹣5t2,小球运动中的最大高度是_____米.12.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.13.已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC.设AB=x,请解答:(1)x的取值范围______;(2)若△ABC是直角三角形,则x的值是______.14.反比例函数图像经过点(2,-3),则它的函数表达式是.15.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.16.已知3是一元二次方程x2﹣2x+a=0的一个根,则a=_____.17.如图,正方形的对角线上有一点,且,点在的延长线上,连接,过点作,交的延长线于点,若,,则线段的长是________.18.如图,中,点在边上.若,,,则的长为______.三、解答题(共66分)19.(10分)如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.问题发现:当时,_____;当时,_____.拓展探究:试判断:当时,的大小有无变化?请仅就图2的情况给出证明.问题解决:当旋转至A、D、E三点共线时,直接写出线段BD的长.20.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是1.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=(k≠0)交于点N,若点M在N右边,求n的取值范围.21.(6分)已知二次函数y=ax2+bx﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x在什么范围内,y随x增大而减小?该函数有最大值还是有最小值?求出这个最值.22.(8分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)23.(8分)如图,中,弦与相交于点,,连接.求证:.24.(8分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.25.(10分)如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).(1)当圆心在内部,∠ABO+∠ADO=70°时,求∠BOD的度数;(2)当点A在优弧BD上运动,四边形为平行四边形时,探究与的数量关系.26.(10分)若抛物线(a、b、c是常数,)与直线都经过轴上的一点P,且抛物线L的顶点Q在直线上,则称此直线与该抛物线L具有“一带一路”关系,此时,直线叫做抛物线L的“带线”,抛物线L叫做直线的“路线”.(1)若直线与抛物线具有“一带一路”关系,求m、n的值.(2)若某“路线”L的顶点在反比例函数的图象上,它的“带线”的解析式为,求此路的解析式.

参考答案一、选择题(每小题3分,共30分)1、A【解析】∵一元二次方程ax2+bx+k=0有实数解,∴可以理解为y=ax2+bx和y=−k有交点,由图可得,−k≤4,∴k≥−4,∴k的最小值为−4.故选A.2、D【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题.3、B【分析】根据一元二次方程的定义来解答:二次项系数是a、一次项系数是b、常数项是c.【详解】解:由方程根据一元二次方程的定义,知一次项系数b=-3,故选:B.【点睛】本题考查了解一元二次方程的定义,关键是往往把一次项系数-3误认为3,所以,在解答时要注意这一点.4、C【解析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【点睛】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.5、B【分析】根据反比例函数关系式,把-2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,∵,∴.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.6、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.【详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.故选:D.【点睛】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.7、D【分析】分两种情况:①当P点在OA上时,即2≤x≤2时;②当P点在AB上时,即2<x≤1时,求出这两种情况下的PC长,则y=PC•OC的函数式可用x表示出来,对照选项即可判断.【详解】解:∵△AOB是等腰直角三角形,AB=,∴OB=1.①当P点在OA上时,即2≤x≤2时,PC=OC=x,S△POC=y=PC•OC=x2,是开口向上的抛物线,当x=2时,y=2;OC=x,则BC=1-x,PC=BC=1-x,S△POC=y=PC•OC=x(1-x)=-x2+2x,是开口向下的抛物线,当x=1时,y=2.综上所述,D答案符合运动过程中y与x的函数关系式.故选:D.【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.8、B【解析】连接AC,由垂径定理的CE=DE,根据线段垂直平分线的性质得到AC=AD,由等腰三角形的性质得到∠CAB=∠DAB=30°,由圆周角定理得到∠COB=60°,根据扇形面积的计算公式即可得到结论.【详解】连接AC,∵CD为⊙O的弦,AB是⊙O的直径,∴CE=DE,∵AB⊥CD,∴AC=AD,∴∠CAB=∠DAB=30°,∴∠COB=60°,∴扇形BOC的面积=,故选B.【点睛】本题考查的是扇形的面积的计算,圆周角定理,垂径定理,等腰三角形的性质,熟练掌握圆周角定理是解答此题的关键.9、D【分析】由题意首先过点A作AF⊥DB于F,过点D作DE⊥AB于E,设DF=x,然后利用勾股定理与含30°角的直角三角形的性质,表示出个线段的长,再由三角形的面积,求得x的值,继而求得答案.【详解】解:过点A作AF⊥DB于F,过点D作DE⊥AB于E.设DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,则AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,∴,∴,解得:,∴.故选:D.【点睛】本题考查平行四边形的性质和三角函数以及勾股定理.解题时注意掌握辅助线的作法以及注意数形结合思想与方程思想的应用.10、B【解析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.二、填空题(每小题3分,共24分)11、1【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可.【详解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴图象的开口向下,有最大值,当t=3时,h最大值=1.故答案为:1.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.12、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13、1<x<2x或x.【分析】(1)因为所求AB或x在△ABC中,所以可利用三角形三边之间的关系即两边之和大于第三边,两边之差小于第三边进行解答.(2)应该分情况讨论,因为不知道在三角形中哪一个是作为斜边存在的.所以有三种情况,即:①若AC为斜边,则1=x2+(3-x)2,即x2-3x+4=0,无解;②若AB为斜边,则x2=(3﹣x)2+1,解得x,满足1<x<2;③若BC为斜边,则(3﹣x)2=1+x2,解得:x,满足1<x<2;【详解】解:(1)∵MN=4,MA=1,AB=x,∴BN=4﹣1﹣x=3﹣x,由旋转的性质得:MA=AC=1,BN=BC=3﹣x,由三角形的三边关系得,∴x的取值范围是1<x<2.故答案为:1<x<2;(2)∵△ABC是直角三角形,∴若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,若AB为斜边,则x2=(3﹣x)2+1,解得:x,满足1<x<2,若BC为斜边,则(3﹣x)2=1+x2,解得:x,满足1<x<2,故x的值为:x或x.故答案为:x或x.【点睛】本题主要考查了旋转的性质,一元一次不等式组的应用,三角形的三边关系,掌握一元一次不等式组的应用,旋转的性质,三角形的三边关系是解题的关键.14、.【解析】试题分析:设反比例函数的解析式是.则,得,则这个函数的表达式是.故答案为.考点:1.待定系数法求反比例函数解析式;2.待定系数法.15、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为,

故答案为:【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16、-3【分析】根据一元二次方程解的定义把代入x2﹣2x+a=0即可求得答案.【详解】将代入x2﹣2x+a=0得:,解得:,故答案为:.【点睛】本题考查了一元二次方程解的定义,本题逆用一元二次方程解的定义是解题的关键.17、5【分析】如图,作于.利用勾股定理求出,再利用四点共圆证明△EFG是等腰直角三角形,从而可得FG的长,再利用勾股定理在中求出CG,由即可解决问题.【详解】解:如图,作于.四边形是正方形,,,,,,,,,,,在中,,,,,,四点共圆,,,∴在中,,∴在中,,,故答案为:.【点睛】本题考查正方形的性质、等腰直角三角形性质及判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.18、【分析】根据相似三角形对应边成比例即可求得答案.【详解】,,,,,解得:故答案为:【点睛】本题考查了相似三角形的性质,找准对应边是解题的关键.三、解答题(共66分)19、(1)①;②;(2)的大小没有变化;(3)BD的长为:.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情况分析,A、D、E三点所在直线与BC不相交和与BC相交,然后利用勾股定理分别求解即可求得答案.【详解】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴AE=AC=5,BD=BC=4,∴.②如图1,当α=180°时,可得AB∥DE,∵,∴.故答案为:①;②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,连接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE=AB=3,∴AE=AD+DE=,由(2),可得:,∴BD=;②如图4,连接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE=AB=3,∴AE=AD-DE=,由(2),可得:,∴BD=AE=.综上所述,BD的长为:.【点睛】此题属于旋转的综合题.考查了、旋转的性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握分类讨论思想的应用是解此题的关键.20、(1)k=1;(2)n>1或﹣1<n<2.【分析】(1)把点A的横坐标代入一次函数解析式求出纵坐标,确定出点A的坐标,代入反比例解析式求出k的值即可;

(2)根据题意画出直线,根据图象确定出点M在N右边时n的取值范围即可.【详解】解:(1)令x=1,代入y=x﹣2,则y=1,∴A(1,1),∵点A(1,1)在双曲线y=(k≠2)上,∴k=1;(2)联立得:,解得或,即B(﹣1,﹣1),如图所示:当点M在N右边时,n的取值范围是n>1或﹣1<n<2.【点睛】此题考查了一次函数与反比例函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.21、(1)y=x2﹣2x﹣3;(2)当x<1时,y随x增大而减小,该函数有最小值,最小值为﹣1.【分析】(1)将(1,﹣1)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得,解得,所以抛物线解析式为y=x2﹣2x﹣3;(2)∵y=(x﹣1)2﹣1,∴抛物线的对称轴为直线x=1,顶点坐标为(1,﹣1),∵a>0,∴当x<1时,y随x增大而减小,该函数有最小值,最小值为﹣1.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.22、小亮说的对,CE为2.6m.【解析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【详解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.23、见解析【分析】由AB=CD知,得到,再由知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【详解】解:,,即,;,在△ADE和△CBE中,,∴△ADE≌△CBE(ASA),.【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.24、(1)400,35%;(2)条形统计图见解析;(3)不公平.【分析】(1)用A等级的人数除以它所占的百分比可得调查的总人数,然后用1减去其它等级的百分比即可求得n的值;(3)先计算出D等级的人数,然后补全条形统计图即可;(4)通过树状图可确定12种等可能的结果,再找出和为奇数的结果有8种,再确定出为奇数的概率,再确定小明去和小刚去的概率,最后比较即可解答.【详解】解:(1)由统计图可知:A等级的人数为20,所占的百分比为5%则本次参与调查的学生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由统计图可知:A等级的人数所占的百分比为45%D等级的人数为400×35%=140(人)补全条形统计图如下:(3)根据题意画出树状图如下:可发现共有12种等可能的结果且和为奇数的结果有8种所以小明去的概率为:小刚去的概率为:.由>.所以这个游戏规则不公平.【点睛】本题考查了游戏的公平性,先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,这是解答游戏公平性题目的关键.25、(1)140°;(2)当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时,+=60°;点O在∠BAD外部时,|-|=60°.【解析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根据圆周角定理易得∠BOD=2∠BAD=140°;(2)分点O在∠BAD内部和外部两种情形分类讨论:①当点O在∠BAD内部时,首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②当点O在∠BAD外部时:Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.【详解】(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如图4,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD-∠BAD=∠OAD-60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA-60°,即∠ODA-∠OBA=60°.所以,当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论