2023届临夏市重点中学数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
2023届临夏市重点中学数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
2023届临夏市重点中学数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
2023届临夏市重点中学数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
2023届临夏市重点中学数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数 B.众数 C.方差 D.中位数2.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(

)A.甲 B.乙 C.丙 D.丁3.剪纸是中国特有的民间艺术.以下四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60° B.50° C.40° D.30°5.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°6.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6 B.6 C.﹣2 D.27.从,,,这四个数字中任取两个,其乘积为偶数的概率是()A. B. C. D.8.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2 B.3 C.4 D.59.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A.甲组 B.乙组 C.丙组 D.丁组10.在△中,∠,如果,,那么cos的值为()A. B.C. D.11.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A. B. C. D.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤a+c<,其中正确结论的个数是()A.②③④ B.①②⑤ C.①②④ D.②③⑤二、填空题(每题4分,共24分)13.已知,则_____.14.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.15.计算:=______.16.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)17.抛物线y=2(x−3)2+4的顶点坐标是__________________.18.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____.三、解答题(共78分)19.(8分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.20.(8分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)计算并完成上述表格;(2)请估计当n很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?21.(8分)用适当方法解下列方程.(1)(2)22.(10分)(1)计算:(2),求的度数23.(10分)某批发商以50元/千克的成本价购入了某产品800千克,他随时都能一次性卖出这种产品,但考虑到在不同的日期市场售价都不一样,为了能把握好最恰当的销售时机,该批发商查阅了上年度同期的经销数据,发现:①如果将这批产品保存5天时卖出,销售价为80元;②如果将这批产品保存10天时卖出,销售价为90元;③该产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系;④这种产品平均每天将损耗10千克,且最多保存15天;⑤每天保存产品的费用为100元.根据上述信息,请你帮该批发商确定在哪一天一次性卖出这批产品能获取最大利润,并求出这个最大利润.24.(10分)为庆祝建国周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.25.(12分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)26.快乐的寒假临近啦!小明和小丽计划在寒假期间去镇江旅游.他们选取金山(记为)、焦山(记为)、北固山(记为)这三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),请用“画树状图”或“列表”的方法求他俩都选择金山为第一站的概率.

参考答案一、选择题(每题4分,共48分)1、D【解析】去掉一个最高分和一个最低分对中位数没有影响,故选D.2、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.3、B【解析】根据轴对称图形的定义以及中心对称图形的定义分别判断即可得出答案.【详解】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;

B、此图形是轴对称图形,也是中心对称图形,故此选项正确;

C、此图形不是轴对称图形,也不是中心对称图形,故此选项错误;D、此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.4、B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,

∴∠ACB=∠AOB=100°=50.

故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.5、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.6、C【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【详解】解:设a是方程x1﹣5x+k=0的另一个根,则a+3=1,即a=﹣1.故选:C.【点睛】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.7、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是,故选:C.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8、C【分析】根据平行线分线段成比例定理即可得出答案.【详解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故选C.【点睛】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键.9、D【解析】试题分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.考点:事件概率的估计值.10、A【分析】先利用勾股定理求出AB的长度,从而可求.【详解】∵∠,,∴∴故选A【点睛】本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.11、B【解析】试题分析:∵由二次函数的图象知,a<1,>1,∴b>1.∴由b>1知,反比例函数的图象在一、三象限,排除C、D;由知a<1,一次函数的图象与y国轴的交点在x轴下方,排除A.故选B.12、B【分析】令x=1,代入抛物线判断出①正确;根据抛物线与x轴的交点判断出②正确;根据抛物线的对称轴为直线x=﹣1列式求解即可判断③错误;令x=﹣2,代入抛物线即可判断出④错误,根据与y轴的交点判断出c=1,然后求出⑤正确.【详解】解:由图可知,x=1时,a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴△=>0,故②正确;∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x==﹣1,∴b=2a<0,故③错误;由图可知,x=﹣2时,4a﹣2b+c>0,故④错误;当x=0时,y=c=1,∵a+b+c<0,b=2a,∴3a+1<0,∴a<∴a+c<,故⑤正确;综上所述,结论正确的是①②⑤.故选:B.【点睛】本题主要考查二次函数的图像与性质,关键是根据题意及图像得到二次函数系数之间的关系,熟记知识点是前提.二、填空题(每题4分,共24分)13、【分析】由已知可得x、y的关系,然后代入所求式子计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查了比例的性质和代数式求值,属于基本题型,掌握求解的方法是关键.14、【分析】等量关系为:红球数:总球数=,把相关数值代入即可求解.【详解】设红球有x个,根据题意得:,

解得:x=1.

故答案为1.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15、4【分析】直接利用零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=1+3=4.故答案为:4.【点睛】此题主要考查了零指数幂的性质和绝对值的性质,正确化简各数是解题关键.16、54.6【分析】过P点作PD垂直直线b于点D,构造出两个直角三角形,设河两岸之间的距离约为x米,根据所设分别求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【详解】过P点作PD垂直直线b于点D设河两岸之间的距离约为x米,即PD=x,则,可得:解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD垂直直线b于点D,构造出直角三角形.17、(3,4)【解析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.18、1【分析】根据题意得出△AOD∽△OCE,进而得出,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵点A是双曲线y=-在第二象限分支上的一个动点,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.三、解答题(共78分)19、证明见解析【解析】由SAS证明△ADF≌△CBE,即可得出AF=CE.【详解】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴AF=CE.【点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.20、(1)472,0.596;(2)0.6,0.6;(3)144°.【解析】试题分析:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率,(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率,(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P,(3)利用频率估计出的概率是近似值.试题解析:(1)如下表:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298472604落在“可乐”区域的频率0.60.610.60.5960.590.604(2)0.6;0.6(3)由(2)可知落在“车模”区域的概率约是0.4,从而得到圆心角的度数约是360°×0.4=144°.21、(1),;(2),【解析】(1),,△=16-4×3×(-1)=28,∴,∴,;(2),,,∴或,∴,22、(1);(2)【分析】(1)利用特殊角的三角函数值分别计算每一项,再把结果相加减;(2)先求出的值,再根据特殊角的三角函数求出的度数,即可求出的度数.【详解】解:(1)原式====;(2)∵,∴,∴,∴.【点睛】本题主要考查了特殊角的三角函数值的混合运算.熟记各种特殊角的三角函数值是解决此题的关键.23、保存15天时一次性卖出能获取最大利润,最大利润为23500元【分析】根据题意求出产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系y=2x+1,根据利润=售价×销售量-保管费-成本,可利用配方法求出最大利润.【详解】解:由题意可求得y=2x+1.设保存x天时一次性卖出这批产品所获得的利润为w元,则w=(800-10x)(2x+1)-100x-50×800=-20x2+800x+16000=-20(x-20)2+24000∵0<x≤15,∴x=15时,w最大=23500答:保存15天时一次性卖出能获取最大利润,最大利润为23500元.【点睛】此题主要考查了二次函数在实际生活中的应用,熟练掌握将实际生活中的问题转化为二次函数是解题的关键.24、(1)200人;“绘画”:35人,“舞蹈”:50人;;【分析】(1)根据统计图可得报名“书法”类的人数有人,占整个被抽取到学生总数的,再进行计算即可得到答案;

(2)根据统计图可以报名“绘画”类的人数,从而报名“舞蹈”类的人数,则可以将条形统计图补充完整;

(3)由报名“声乐”类的人数为人,可得“声乐”类对应扇形圆心角的度数;

(4)根据树状图进行求解即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论