



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面与平面平行第1课时平面与平面平行的判定本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第八章《立体几何初步》,本节课主要学习平面与平面平行的判定定理及其应用。本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多。而且是空间问题平面化的典范空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法。本节课是在前面已经学习空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知操作确认(合情推理),归纳出平面与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。课程目标学科素养A.掌握空间平面与平面平行的判定定理,并能应用这个定理解决问题.B.平面与平面平行的判定定理的应用.1.逻辑推理:平行关系的综合问题;2.直观想象:平面与平面平行的判定定理。1.教学重点:空间平面与平面平行的判定定理;2.教学难点:应用平面与平面平行的判定定理解决问题。多媒体教学过程教学设计意图核心素养目标复习回顾,温故知新1.
到现在为止,我们一共学习过几种判断直线与平面平行的方法呢?【答案】(1)定义法;(2)直线与平面平行的判定定理2.
平面与平面有几种位置关系?分别是什么?【答案】相交、平行3.怎样判断两平面平行?二、探索新知1.思考:若平面α∥β,则α中所有直线都平行β吗?反之,若α中所有直线都平行β,则α∥β吗?【答案】平行,平行探究:如图(1),a和b分别是矩形硬纸片的两条对边所在直线,它们都和桌面平行,那么都和桌面平行,那么硬纸片和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗?【答案】硬纸片与桌面可能相交,如图,三角尺与桌面平行,如图,平面与平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符号表示:图形表示:注意:线面平行→面面平行练习:判断下列命题是否正确,并说明理由.(1)若平面内的两条直线分别与平面平行,则与平行;(2)若平面内有无数条直线分别与平面平行,则与平行;(3)、一个平面内两条不平行的直线都平行于平面,则与平行。(4)、如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行。(5)如果一个平面内的一条直线平行于另一个平面,那么这两个平面平行【答案】(1)×(2)×(3)√(4)√(5)×例1:已知正方体ABCD-A1B1C1D1,求证:平面AB1D1由直线与平面平行的判定,可知D1A∥平面C1BD,同理
D1B1∥平面C1BD,又D1A∩D1B1=D1,所以,平面AB1D1正方体中,相互平行的面不会是()A.前后相对侧面 B.上下相对底面C.左右相对侧面 D.相邻的侧面【解析】由正方体的模型知前后面、上下面、左右面都相互平行,故选D.【答案】D2.下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行【解析】如果一个平面内所有直线都平行于另一个平面,即两个平面没有公共点,则两平面平行,故选B.【答案】B3.如图,已知在三棱锥P-ABC中,D,E,F分别是棱PA,PB,PC的中点,则平面DEF与平面ABC的位置关系是________.【解析】在△PAB中,因为D,E分别是PA,PB的中点,所以DE∥AB.又DE平面ABC,AB⊂平面ABC,因此DE∥平面ABC.同理可证EF∥平面ABC.又DE∩EF=E,DE,EF⊂平面DEF,所以平面DEF∥平面ABC.【答案】平行4.如图,在正方体ABCD-A1B1C1D1中,P为DD1中点.能否同时过D1,B两点作平面α,使平面α∥平面PAC?证明你的结论.解能作出满足条件的平面α,其作法如下:如图,连接BD1,取AA1中点M,连D1M,则BD1与D1M所确定的平面即为满足条件的平面α.证明如下:连接BD交AC于O,连接PO,则O为BD的中点,又P为DD1的中点,则PO∥D1B.∵BD1平面PAC,OP⊂平面PAC,故D1B∥平面PAC.又因为M为AA1的中点,故D1M∥PA,又D1M平面PAC,PA⊂平面PAC,从而D1M∥平面PAC.又因为D1M∩D1B=D1,D1M⊂α,D1B⊂α,所以平面α∥平面PAC.通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。四、小结1.证明的两个平面平行的基本思路;2、证明的两个平面平行的一般步骤。3、证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论