




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则()A. B. C. D.2.在中,“”是“为钝角三角形”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件3.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:①曲线有四条对称轴;②曲线上的点到原点的最大距离为;③曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;④四叶草面积小于.其中,所有正确结论的序号是()A.①② B.①③ C.①③④ D.①②④4.已知锐角满足则()A. B. C. D.5.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为()A. B. C. D.6.已知函数的部分图象如图所示,则()A. B. C. D.7.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.8.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.39.已知分别为圆与的直径,则的取值范围为()A. B. C. D.10.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.11.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.12.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.14.已知函数,在区间上随机取一个数,则使得≥0的概率为.15.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.16.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.18.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.19.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.20.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).21.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.22.(10分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.故选:【点睛】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.2、C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.3、C【解析】
①利用之间的代换判断出对称轴的条数;②利用基本不等式求解出到原点的距离最大值;③将面积转化为的关系式,然后根据基本不等式求解出最大值;④根据满足的不等式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】①:当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;②:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;③:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;④:由②可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.4、C【解析】
利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.5、D【解析】
先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,
将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,
再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.6、A【解析】
先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.【详解】由图象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),将代入得φ)=1,∴φ,结合0<φ,∴φ.∴.∴sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.7、D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.8、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;9、A【解析】
由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题10、C【解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.11、C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.12、B【解析】
设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线x-y=0的对称点Q(y0,x0),则,故只需圆x2+(y-1)2=r2与圆(x-1)2+(y-2)2=1有交点即可,所以|r-1|≤≤r+1,解得.故答案为:【点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.14、【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得≥0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.15、2【解析】
利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.16、【解析】
作出图像,设点,根据已知可得,,且,可解出,计算即得.【详解】如图,设,圆心坐标为,可得,,,,,解得,,即的长是.故答案为:【点睛】本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】
(1)消去参数可得圆的直角坐标方程,再根据,,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,∵,,.∴,.(2)∵直线:的极坐标方程为,当时.即:,∴或.∴或,∴直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.18、(1)1(2)【解析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.解法二:可利用导数,先证明不等式,,,,令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.【详解】(1)由题意,得,,由,…①,得,令,则,因为,所以在单调递增,又,所以当时,,单调递增;当时,,单调递减;所以,当且仅当时等号成立.故方程①有且仅有唯一解,实数的值为1.(2)解法一:令(),则,所以当时,,单调递增;当时,,单调递减;故.令(),则.(i)若时,,在单调递增,所以,满足题意.(ii)若时,,满足题意.(iii)若时,,在单调递减,所以.不满足题意.综上述:.解法二:先证明不等式,,,…(*).令,则当时,,单调递增,当时,,单调递减,所以,即.变形得,,所以时,,所以当时,.又由上式得,当时,,,.因此不等式(*)均成立.令(),则,(i)若时,当时,,单调递增;当时,,单调递减;故.(ii)若时,,在单调递增,所以.因此,①当时,此时,,,则需由(*)知,,(当且仅当时等号成立),所以.②当时,此时,,则当时,(由(*)知);当时,(由(*)知).故对于任意,.综上述:.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19、(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解析】
(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【详解】解:(1)函数的定义域为由已知得,则,解得.(2)由题意得,则.当时,,所以单调递减,当时,,所以单调递增,所以,单调递减区间为,单调递增区间为,的极小值为,无极大值.(3)要证成立,只需证成立.令,则,当时,单调递增,当时,单调递减,所以的极大值为,即由(2)知,时,,且的最小值点与的最大值点不同,所以,即.所以,.【点睛】知识方面,考查建立方程组求未知数,利用导数求函数的单调区间和极值以及不等式的证明;能力方面,考查推理论证能力、分析问题和解决问题的能力以及运算求解能力;试题难度大.20、(1);(2)见解析.【解析】
(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会化媒体营销小自考试题及答案
- 公共事业管理人际沟通能力试题及答案
- 小自考视觉传播设计计划书题及答案
- 上海市嘉定、长宁、金山区2025届高三冲刺模拟化学试卷含解析
- 2024年视觉传播设计复习要点试题及答案
- 视觉传播设计考试备考题及答案
- 行政判断力与决策能力培养试题及答案
- 行政管理中的公共价值观念试题及答案
- 研究生面试试题及答案
- 小自考汉语言文学的人物形象分析与试题及答案
- 2023年普通高等学校招生全国统一考试全国乙英语试题含答案
- 《临床急救》课件
- 2025年高考数学考试技巧篇(核心知识背记手册)-专项训练【含答案】
- 2025年广东广州人才集团测评中心研发人员招聘历年高频重点提升(共500题)附带答案详解
- 道德经与职业生涯管理知到智慧树章节测试课后答案2024年秋上海应用技术大学
- 2025年张掖市甘州区事业单位招考高频重点提升(共500题)附带答案详解
- 商业零售空间的光环境设计及其对消费者行为的影响研究
- 小学数学二年级第二学期口算计算共5130道题
- 国省道交通安全隐患排查治理手册
- 内环境稳态-课件
- 国寿长久呵护住院定额给付医疗保险
评论
0/150
提交评论