2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷_第1页
2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷_第2页
2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷_第3页
2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题2绝对值一、绝对值的化简【学霸笔记】1. 一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0,关系如下:;2. 绝对值可以与数轴结合起来,可用于表示距离,如:表示数a到原点的距离,表示数a与数b间的距离;3. 绝对值的性质①;②;③;④;⑤【典例】若a+b+c=0,则|aA.﹣7 B.﹣1 C.1 D.7【解答】解:∵a+b+c=0,∴a,b,c中两正一负或一正两负,假设a>0,b>0,c<0,原式=1+1﹣1+1﹣1﹣1﹣1=﹣1,其他情况同理值为﹣1;假设a>0,b<0,c<0,原式=1﹣1﹣1﹣1﹣1+1+1=﹣1,其他情况同理值为﹣1,故选:B.【巩固】数形结合是一种重要的数学方法,如在化简|a|时,当a在数轴上位于原点的右侧时,|a|=a;当a在数轴上位于原点时,|a|=0;当a在数轴上位于原点的左侧时,|a|=﹣a.当a,b,c三个数在数轴上的位置如图所示,试用这种方法解决下列问题.(1)当a=1时,求|a|a=,当b=﹣2时,求|b(2)请根据a,b,c三个数在数轴上的位置,求|a(3)请根据a,b,c三个数在数轴上的位置,化简:|a+c|+|c|+|a+b|﹣|b﹣c|.二、绝对值的非负性【学霸笔记】 不小于0的数(或大于等于0的数)称为非负数,具有以下性质:(1)非负数具有最小值0;(2)若几个非负数的和为0,那么每个非负数均为0;(3)任何数的绝对值都大于等于0,即任何数的绝对值都是非负数.【典例】有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0(2)|a﹣b|+|b﹣c|=|a﹣c|(3)(a﹣b)(b﹣c)(c﹣a)>0(4)|a|<1﹣bc其中正确的命题有()A.4个 B.3个 C.2个 D.1个【解答】解:由图可知c<﹣1<0,0<a<b<1,(1)命题abc<0正确;(2)在命题中a﹣b<0,b﹣c>0,所以|a﹣b|+|b﹣c|=﹣(a﹣b)+(b﹣c)=2b﹣a﹣c.又因为a﹣c>0,所以|a﹣c|=a﹣c.左边≠右边,故错误;(3)在该命题中,因为a﹣b<0,b﹣c>0,c﹣a<0,所以(a﹣b)(b﹣c)(c﹣a)>0,故正确;(4)在命题中,|a|<1,bc<0,∴1﹣bc>1,所以|a|<1﹣bc,故该命题正确.所以正确的有命题①③④这三个.故选:B.【巩固】如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求:1ab+1(a+1)(b三、绝对值的最值【学霸笔记】1. 的几何意义就是数轴上数a与数b两点间的距离;2. 一般地,设分别是数轴上依次排列的表示有理数的点,若n为奇数,当时,的值最小;若n为偶数,当时,的值最小.【典例】阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A和B之间的距离是;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是,最小值是;(4)当x在何范围,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并写出它的最大值.【解答】解:(1)数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5.故答案为:5;(2)数轴上表示x和﹣5的两点A和B之间的距离是|x+5|.故答案为:|x+5|;(3)在数轴上,|x﹣1|+|x+3|表示数轴上x和1的两点之间与x和﹣3的两点之间距离和,当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是﹣3≤x≤1,最小值是4.故答案为:﹣3≤x≤1,4;(4)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2.【巩固】已知数轴上表示数a的A与表示数b的点B之间的距离|AB|=|a﹣b|.(1)当x=时,|x﹣3|有最小值,这个最小值是.(2)当x=时,5﹣|x﹣2|有最大值,这个最大值是.(3)当整数x=时,|x﹣3|+|x﹣6|有最小值,这个值是.(4)当整数x=时,|x﹣1|+|x﹣2|+|x﹣5|有最小值,这个值是.(5)|x﹣1|﹣|x﹣5|有最大值,这个值是;|x﹣1|﹣|x﹣5|有最小值,这个最小值是;(6)已知|x﹣2|+|x﹣4|+|y﹣1|﹣|y﹣2|=1,则(x+y)有最值(填“大”,“小”),这个值是.巩固练习1.设x是有理数,y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值 B.只有一个x的值使y取最小值 C.有有限个(不止一个)x的值使y取最小值 D.有无数多个x的值使y取最小值2.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2022的值为()A.﹣2021 B.﹣1010 C.﹣1011 D.﹣10093.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为()A.2 B.3 C.4 D.54.设有理数a、b、c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x-a+b2|+|x-bA.a-c2 B.a+b+2c25.若有理数m,n,p满足|m|m+|n|6.已知|x+2|+|1﹣x|=9﹣|y﹣5|﹣|1+y|,则x+y的最小值为,最大值为.7.有理数a、b、c均不为0,且a+b+c=0,设x=|a|b+c+|b|c+a+8.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值是.9.如果a,b,c是非零有理数,求a|10.设x1,x2,x3,x4,x5,x6是六个不同的正整数,取值于1,2,3,4,5,6,记S=|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|+|x5﹣x6|+|x6﹣x1|,求S的最小值.11.已知有理数a、b、c在数轴上的位置如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论