版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
点电荷之间的相互作用能定义静电能为零的状态设想带电体系中的电荷可以无限分割为许多小单元,最初认为它们分散在彼此相距很远的位置上,规定这种状态下系统的静电能为零。
——We=0静电能We:把体系各部分电荷从无限分散的状态聚集成现有带电体系时外力抵抗电场力所做的全部功
A’=-A(电场力做功)2/1/20231两个点电荷的情形
先移动q1
到M点,———外力不做功再移动q2
到N点,———外力做功q1单独存在时N的点电势交换移动次序可得
q2单独存在时M点的电势系统的静电能q1单独存在时q2处的电势q2单独存在时在q1处的电势2/1/20232多个点电荷的情形把无限分散的多个点电荷逐个从无穷远移至相应位置,计算外力所做的功
代表第j
个电荷在第i
个电荷所在位置Pi处产生的电势
点电荷组的总功应为
P2664.106式2/1/20233第二种表达式可以证明,静电能值与电荷移动的次序无关
Ui:除点电荷i外其它点电荷单独存在时qi
所在处的电势总和4.1084.1072/1/20234点电荷组的静电势能点电荷组的静电势能We等于电场力所做的功A’
相应的表达式为p266(4.109)、(4.110)、(4.111)Ui:除点电荷i外其它点电荷单独存在时qi
所在处的电势总和2/1/20235电荷连续分布情形的静电能将上式推广到电荷连续分布的情形,假定电荷是体分布,体密度为e,把连续分布的带电体分割成许多电荷元,其电量qi=eVi,则有带电体各部分电荷在积分处的总电势总静电能不是相互作用能2/1/20236电场的能量和能量密度从公式看,静电能仅对其中包含电荷的体积或面积进行,在其他地方,积分等于零是否可以断定能量仅局限于空间有电荷的区域?以平行板电容器为例说明极板上的电量板间电压体积为V内的W电能密度:单位体积内的电能
普遍适用能量定域于场中2/1/20237一、点电荷之间的相互作用能以三点电荷为例,相距无穷远,则无相互作用q1
不动q2在q1作用下由无穷远移至r12
处,做功q3在q1和q2作用下由无穷远移至r23
处,做功§3-7电荷间相互作用能静电场的能量q1
在q2处的电位2/1/20238Ui
为除qi
外,其他电荷在qi
处所产生的电势推广:外力做总功:做功的过程对称性2/1/20239二、连续带电体的静电能1.连续带电体称为静电能,U为所有电荷在dq
处的电势例如半径为R带电量为Q的电体球,可看成无穷远dq聚在一起三、电容器的静电能2/1/202310t=0开始,每次自下极板把微量电荷dq
移至上板,电容器间电场逐渐加大,除第一次外,每次移动,外力都要克服静电力做功,t
时刻带电q
,再移dq
,外力做功最后带电Q,则电容器储能三、电容器的能量-+UQ-QE2/1/202311四、电场的能量(有介质时静电场的能量密度))平行板电容器:储能:一般情形:电场能量密度:2/1/202312(包括各向异性的线性极化介质)在空间任意体积V内的电场能:对各向同性介质:可以证明,对所有线性极化介质都成立。在真空中:(同第2章结果)2/1/202313例题9求半径为R
带电量为Q
的均匀带电球的静电能解一:计算定域在电场中的能量球内r处电场2/1/202314解二:计算带电体系的静电能再聚集这层电荷dq,需做功:而所以球体是一层层电荷逐渐聚集而成,某一层内已聚集电荷2/1/202315例9-12如图所示,球形电容器的内外半径分别R1和R2,所带电荷为+-Q,在两球壳间充以电容率为的电介质,问此电容器存储的电场能量为多少?故球壳内的电场能量密度为解:若球形电容器上的电荷是均匀分布的,则球壳间电场也是对称分布的,由高斯定理可得球壳间的电场强度为:R2R1rdr取半径为r,厚为dr的球壳,其体积元为dV=4r2dr.所以,在此体积元内电场的能量为:2/1/202316电场的能量为:如果R2趋于正无穷,此带电系统即为一半径为R1带电为Q的孤立球形导体,它激发的电场所储存的能量为球形电容器的电容为C=4[R1R2/(R1+R2),所以由电容器储存的电能We=Q2/2C,也能得到同样的答案.电容器的能量是储存于电容器的电场之中的2/1/202317例9-13如图所示的圆柱型电容器,中间是空气,空气的击穿场强是Eb=3×106V.m-1.电容器外半径R2=10-2m.在空气不被击穿的情况下,内半径R1取多大值可使电容器储存的能量最多?R1R2rBAl2/1/202318从上式可以看出E1/r成正比.故在内表面附近,即r=R1处的电场最强.因此,我们设想此处的电场强度为击穿场强Eb时圆柱型电容器即可带电荷最多,又不会使空气介质击穿,于是有解:由高斯定理可知,两圆柱面间的电场强度为由上式可得max=20R1Eb,显然,max是由R1和Eb,决定的.由电容器的能量公式We=QU/2可知,单位长度圆柱型电容器所储存的能量为
We=U/2(3)2/1/202319
U为两极间的电势差,由电势差的定义式有把上式代入(3)式,得把(1)式代入上式,得式(5)表明,在Eb已知时,We仅随R1而异.显然,想要圆柱型电容器储存的能量最多,且空气介质又不被击穿,内半径为R1的值需满足dWe/dR1=0的条件.有式(5)得2/1/202320上述计算结果表明,对以空气为介质的电容器,当外半径为0.01m时其内半径需为6.07×10-3m,才能使所贮存的能量最多。此时,两极间的最大电压为9.10×103V。此时,圆柱型电容器所储存能量最大,且空气又不被击穿.由已知数据内半径为R1=10-2/e-2m=6.07×10-3m.我们还可以计算出空气不被击穿时,圆柱型电容器两极间最大电势差,将式(6)(2)代入(4),得2/1/202321例9-14球形电容器R1,R2间充满两层电介质r1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024托管中心教师聘用合同
- 2024投资咨询与管理服务协议
- 2024年风电塔架搬运合同
- 工业网关小体积安全操作规程
- 二零二五年度EPS构件绿色建筑节能改造供应与安装合同3篇
- 采矿权转让合同协议
- 2024年装修工程款支付协议3篇
- 体育赛事参与安全免责协议合同
- 网络交易安全服务合同
- 2024汽车二手车交易合同协议2篇
- 世界经典神话与传说故事阅读测试(四)
- 2024年第五届插花花艺行业技能竞赛理论考试题库(含答案)
- 央国企信创化与数字化转型规划实施
- 2025届浙江省杭州市学军中学生物高一第一学期期末统考试题含解析
- 会计学原理期末测试练习题及答案
- 金葡素注射液与血小板功能的关联
- 澳门的英文5篇
- 2024年7月国家开放大学法律事务专科《企业法务》期末纸质考试试题及答案
- 《教师法》培训课件
- 常用护理评估表及注意事项
- 河北省唐山地区2023-2024学年上学期期末八年级历史试卷
评论
0/150
提交评论