面面垂直习题课2_第1页
面面垂直习题课2_第2页
面面垂直习题课2_第3页
面面垂直习题课2_第4页
面面垂直习题课2_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

面面垂直2练习题VABC1、二面角的平面角:

以二面角的棱上任意一点为端点,在两个面上分别引垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。=

等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。)注:(1)二面角的平面角与点的位置无关,只与二面角的张角大小有关。(2)二面角是用它的平面角来度量的,一个二面角的平面角多大,就说这个二面角是多少度的二面角。(3)平面角是直角的二面角叫做直二面角。(4)二面角的取值范围一般规定为(0,π)。二面角的平面角的定义、范围及作法观看动画演示两个平面垂直的判定定理:线线垂直线面垂直面面垂直如果一个平面经过了另一个平面的一条垂线,那么这两个平面互相垂直.例1如图,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.PABCO如图,三棱锥P-ABC中,PB⊥底面ABC,∠ACB=90°,PB=BC=CA,E为PC中点,求证:平面PAC⊥面PBC①②求异面直线PA与BE所成角的大小ACBEPPACB⊿ABC是直角三角形,∠ACB=90°,P为平面外一点,且PA=PB=PC求证:平面PAB⊥面ABCO如图,四棱锥P-ABCD的底面是菱形,PA⊥底面ABCD,∠BAD=120°,E为PC上任意一点,ACDBPE求证:平面BED⊥面PAC①O若E是PC中点,AB=PA=a,求二面角E-CD-A的的正切值。②F如图,ABCD是正方形,PA⊥面ABCD,连接PB,PC,PD,AC,BD,问图中有几对互相垂直的平面?ABDPC面PAC⊥面ABCD面PAB⊥面ABCD面PAD⊥面ABCD面PAD⊥面PAB面PAD⊥面PCD面PBC⊥面PAB面PBD⊥面PAC如图,三棱锥P-ABC中,面PBC⊥面ABC,⊿PBC是边长为a的正三角形,∠ACB=90°,∠BAC=30°,BM=MC求证:PB⊥AC①②二面角C-PA-M的大小PMBCAD例2如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.PABCDMEF例3在四面体ABCD中,已知AC⊥BD,BAC=∠CAD=45°,∠BAD=60°,求证:平面ABC⊥平面ACD.ABCDE课堂练习课堂练习空间四面体ABCD中,若AB=BC,AD=CD,E为AC的中点,则有()ABCED(A)平面ABD⊥面BCD(B)平面BCD⊥面ABC(C)平面ACD⊥面ABC(D)平面ACD⊥面BDE课堂练习:1.如果平面α内有一条直线垂直于平面β内的一条直线,则α⊥β.()3.如果平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥β.()一、判断:××4.若m⊥α,mβ,则α⊥β.()∪√

2.如果平面α内有一条直线垂直于平面β内的两条直线,则α⊥β.()√1.过平面α的一条垂线可作_____个平面与平面α垂直.2.过一点可作_____个平面与已知平面垂直.二、填空题:3.过平面α的一条斜线,可作____个平面与平面α垂直.4.过平面α的一条平行线可作____个平面与α垂直.一无数无数一三、如右图:A是ΔBCD所在平面外一点,AB=AD,∠ABC=∠ADC=90°,E是BD的中点,求证:平面AEC⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论