版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.42.双曲线的一条渐近线方程为,那么它的离心率为()A. B. C. D.3.已知复数是正实数,则实数的值为()A. B. C. D.4.三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,,,若点在线段上,且,则过点的平面截球所得截面的最小面积为()A. B. C. D.5.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.6.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.47.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A. B. C. D.8.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.49.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.10.已知锐角满足则()A. B. C. D.11.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%12.已知实数、满足约束条件,则的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为________.14.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.15.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.16.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.18.(12分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.19.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.20.(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.21.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.22.(10分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。2.D【解析】
根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】∵双曲线的一条渐近线方程为,可得,∴,∴双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.3.C【解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.4.A【解析】
由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.5.D【解析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).6.A【解析】
根据题意依次计算得到答案.【详解】根据题意知:,,故,,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.7.C【解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.8.A【解析】
采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.9.D【解析】
根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,
当,若为增函数,则①,
当,若为增函数,必有在上恒成立,
变形可得:,
又由,可得在上单调递减,则,
若在上恒成立,则有②,
若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③
联立①②③可得:.
故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.10.C【解析】
利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.11.B【解析】试题分析:由题意故选B.考点:正态分布12.C【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先求出所有的基本事件个数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.【详解】一次随机抽取其中的三张,所有基本事件为:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,因此“抽取的三张卡片编号之和是偶数”的概率为:.故答案为:.【点睛】本题考查了古典概型及其概率计算公式,属于基础题.14.360【解析】
先计算第一块小矩形的面积,第二块小矩形的面积,,面积和超过0.5,所以中位数在第二块求解,然后再求得平均数作差即可.【详解】第一块小矩形的面积,第二块小矩形的面积,故;而,故.故答案为:360.【点睛】本题考查频率分布直方图、样本的数字特征,考查运算求解能力以及数形结合思想,属于基础题.15.【解析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.16.【解析】
由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.∴,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】
(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【详解】证明:(1)因为底面为正方形,所以又因为,,满足,所以又,面,面,,所以面.又因为面,所以,面面.(2)由(1)知,,两两垂直,以为坐标原点,以,,分别为,,轴建系如图所示,则,,,,则,.所以,,,,设面法向量为,则由得,令得,,即;同理,设面的法向量为,则由得,令得,,即,所以,设二面角的大小为,则所以二面角余弦值为.【点睛】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.18.(Ⅰ)当时,<0,单调递减;当时,>0,单调递增;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对求导,再对a进行讨论,判断函数的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论,第(Ⅲ)问,构造函数=(),利用导数判断函数的单调性,从而求解a的值.试题解析:(Ⅰ)<0,在内单调递减.由=0有.当时,<0,单调递减;当时,>0,单调递增.(Ⅱ)令=,则=.当时,>0,所以,从而=>0.(Ⅲ)由(Ⅱ),当时,>0.当,时,=.故当>在区间内恒成立时,必有.当时,>1.由(Ⅰ)有,而,所以此时>在区间内不恒成立.当时,令=().当时,=.因此,在区间单调递增.又因为=0,所以当时,=>0,即>恒成立.综上,.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明不等式,一般证明的最小值大于0,为此要研究函数的单调性.本题中注意由于函数的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.19.(1);(2)详见解析.【解析】试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.(1),,又是等腰三角形,所以,把点代入椭圆方程,求得,所以椭圆方程为;(2)由题易得直线、斜率均存在,又,所以,设直线代入椭圆方程,化简得,其一解为,另一解为,可求,用代入得,,为定值.考点:1.椭圆的方程;2.直线与椭圆的位置关系;3.两点间连线的斜率20.(1)(2)【解析】
(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入①,得,,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.21.(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同:商业物业与经营权划分2篇
- 2024年度钢管销售代理合同3篇
- 二零二四年度服装店与电商平台合作协议2篇
- 2024年文化遗产保护项目坟墓搬迁及保护合同2篇
- 2024年度合作开发合同研发内容和共享权益的具体规定
- 2024年度教育培训机构线上课程销售合同3篇
- 2024年度广告代理商合同2篇
- 2024年度汽车租赁服务合同标的及服务内容详细描述3篇
- 2024年汽车销售分销商合作协议书3篇
- 《混凝土拌合楼培训》课件
- 管道压力试验事故案例
- 钳工基础任务单
- 解构与重构性素描_设计素描
- 略谈当代大学生的审美趋势
- 全国邮政编码一览表格模板
- Kappa计算公式及表格
- IH历史库服务器与采集器配置
- 高效团队执行四步法_ ppt课件
- 军休工作个人总结个人
- 卷扬机专项安全操作方案
- 公共生活中的道德规范
评论
0/150
提交评论