版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.2.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.3.设为虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数,则的最小值为()A. B. C. D.5.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元6.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.7.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln28.已知,,由程序框图输出的为()A.1 B.0 C. D.9.记等差数列的公差为,前项和为.若,,则()A. B. C. D.10.若,则函数在区间内单调递增的概率是()A.B.C.D.11.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.12.设实数、满足约束条件,则的最小值为()A.2 B.24 C.16 D.14二、填空题:本题共4小题,每小题5分,共20分。13.已知,(,),则=_______.14.如果复数满足,那么______(为虚数单位).15.函数过定点________.16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.18.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.19.(12分)如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.21.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线①,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.22.(10分)在四棱柱中,底面为正方形,,平面.(1)证明:平面;(2)若,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.2.C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.3.A【解析】
利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【详解】,对应的点的坐标为,位于第一象限.故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.4.C【解析】
利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.5.D【解析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.6.A【解析】
在中,设,,,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,,,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,,,,即,即,,,,,,,,即,又,,,则,所以,,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、、,为线段上的一点,则存在实数使得,,设,,则,,,,,消去得,,所以,,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.7.B【解析】
将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.8.D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.9.C【解析】
由,和,可求得,从而求得和,再验证选项.【详解】因为,,所以解得,所以,所以,,,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.10.B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.11.D【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.12.D【解析】
做出满足条件的可行域,根据图形即可求解.【详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先利用倍角公式及差角公式把已知条件化简可得,平方可得.【详解】∵,∴,则,平方可得.故答案为:.【点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.14.【解析】
把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.【点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.15.【解析】
令,,与参数无关,即可得到定点.【详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【点睛】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.16.【解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.【详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,,由,得,因此,函数的单调递增区间为;(2),,,,,,.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.18.(1)证明见解析(2)45°【解析】
(1)设的中点为,连接,设的中点为,连接,,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.【详解】(1)∵是的中点,∴.设的中点为,连接.设的中点为,连接,.易证:,,∴即为二面角的平面角.∴,而为的中点.易知,∴为等边三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分别为的中点.∴四边形为平行四边形.∴,平面,又平面.∴平面平面.(2)如图,建立空间直角坐标系,设.则,,,,显然平面的法向量,设平面的法向量为,,,∴,∴.,由图形观察可知,平面与平面所成的二面角的平面角为锐角.∴平面与平面所成的二面角大小为45°.【点睛】本题主要考查立体几何中面面垂直的证明以及求解二面角大小,难度一般,通常可采用几何方法和向量方法两种进行求解.19.(1)见解析(2)【解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.【详解】(1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.20.(1)(2)最大值为【解析】
(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,,,,,则当时,取得最大值,最大值为.【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.21.(1)0.0294.(2)应选生产线②.见解析【解析】
(1)由题意转化条件得A工序不出现故障B工序出现故障,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年造纸化学品:制浆助剂项目发展计划
- 2024年车用塑料件合作协议书
- 小学一年级作文我最喜欢的植物10篇
- 小学一年级下册数学基础练习题及答案
- 2024年嵌丝橡胶道口板项目合作计划书
- Thalidomide-5-piperazine-生命科学试剂-MCE
- Unit 1 词汇填空专练人教版八年级英语上册
- Tartaric-acid-disodium-dihydrate-Standard-生命科学试剂-MCE
- 2024年PCR诊断试剂合作协议书
- 2024-2025学年新教材高中英语Unit1FestivalsandCelebrations单元评估习题含解析新人教版必修第三册
- 教师教学能力比赛-教学实施报告(计算机-网络系统集成)
- 国企股权收购方案
- 药物健康宣教
- 哈利波特与混血王子
- 难治性高血压诊治护理课件
- 2024年南京科技职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 车载红外热像仪行业市场前景分析2024-2030年
- 如何做好医院学科建设
- 人工智能的应用
- 设备安全调试维修作业安全培训
- 公务员生涯职业规划书
评论
0/150
提交评论