哥伦比亚大学有机化学 8 Nucleophilic Substitution_第1页
哥伦比亚大学有机化学 8 Nucleophilic Substitution_第2页
哥伦比亚大学有机化学 8 Nucleophilic Substitution_第3页
哥伦比亚大学有机化学 8 Nucleophilic Substitution_第4页
哥伦比亚大学有机化学 8 Nucleophilic Substitution_第5页
已阅读5页,还剩124页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter8

NucleophilicSubstitution8.1

FunctionalGroup

TransformationByNucleophilic

SubstitutionY:–RXYR++:X–nucleophileisaLewisbase(electron-pairdonor)oftennegativelychargedandusedas

Na+orK+saltsubstrateisusuallyanalkyl

halide

NucleophilicSubstitutionSubstratecannotbeanavinylichalideoranarylhalide,exceptundercertainconditionstobediscussedinChapter23.XCCXNucleophilicSubstitution+RXgivesanetherAlkoxideionasthenucleophile..O:..R'–+:XR..O..R'–Table8.1ExamplesofNucleophilicSubstitution(CH3)2CHCH2ONa+CH3CH2BrIsobutylalcohol(CH3)2CHCH2OCH2CH3+NaBrEthylisobutylether(66%)Example+RXgivesanesterCarboxylateionasthenucleophile..O:..R'C–+:XR..O..R'C–OOTable8.1ExamplesofNucleophilicSubstitutionOK+CH3(CH2)16CCH3CH2Iacetone,water+KIOCH2CH3CH3(CH2)16CEthyloctadecanoate(95%)OOExample+RXgivesathiolHydrogensulfideionasthenucleophile..S:..H–+:XR..S..H–Table8.1ExamplesofNucleophilicSubstitutionKSH+CH3CH(CH2)6CH3Brethanol,water+KBr2-Nonanethiol(74%)CH3CH(CH2)6CH3SHExample+RXgivesanitrileCyanideionasthenucleophile–+:XR–CN::CN:Table8.1ExamplesofNucleophilicSubstitutionDMSOCyclopentylcyanide(70%)BrNaCN+CN+NaCNExample+RXgivesanalkylazideAzideionasthenucleophile+:XR–..–NNN..::–+..NNN..:–+Table8.1ExamplesofNucleophilicSubstitutionNaN3+CH3CH2CH2CH2CH2I2-Propanol-waterCH3CH2CH2CH2CH2N3+NaIPentylazide(52%)Example+RXgivesanalkyliodideIodideionasthenucleophile+:XR––..:I....:I..:Table8.1ExamplesofNucleophilicSubstitutionNaIissolubleinacetone;

NaClandNaBrarenot

solubleinacetone.acetone+NaICH3CHCH3Br63%+NaBrCH3CHCH3IExample8.2

RelativeReactivityofHalideLeavingGroupsRIRBrRClRFmostreactiveleastreactiveGeneralizationReactivityofhalideleavinggroupsinnucleophilicsubstitutionisthesameasforelimination.BrCH2CH2CH2Cl+NaCNAsingleorganicproductwasobtainedwhen

1-bromo-3-chloropropanewasallowedtoreact

withonemolarequivalentofsodiumcyanidein

aqueousethanol.Whatwasthisproduct?BrisabetterleavinggroupthanClProblem8.2BrCH2CH2CH2Cl+NaCNAsingleorganicproductwasobtainedwhen

1-bromo-3-chloropropanewasallowedtoreact

withonemolarequivalentofsodiumcyanidein

aqueousethanol.Whatwasthisproduct?CH2CH2CH2Cl+NaBrCN:Problem8.28.3

TheSN2MechanismofNucleophilicSubstitutionManynucleophilicsubstitutionsfollowa

second-orderratelaw.

CH3Br+HO–

ÆCH3OH+Br–

rate=k[CH3Br][HO–]

inference:rate-determiningstepisbimolecularKineticsHO–CH3Br+HOCH3Br–+onestep

concerted

BimolecularmechanismHO–CH3Br+HOCH3Br–+onestep

concerted

BimolecularmechanismHO–CH3Br+HOCH3Br–+onestep

concertedHOCH3Brd-d-transitionstate

Bimolecularmechanism8.4

StereochemistryofSN2ReactionsNucleophilicsubstitutionsthatexhibit

second-orderkineticbehaviorare

stereospecificandproceedwith

inversionofconfiguration.Generalizationnucleophileattackscarbon

fromsideoppositebond

totheleavinggroupInversionofConfigurationnucleophileattackscarbon

fromsideoppositebond

totheleavinggroupthree-dimensional

arrangementofbondsin

productisoppositeto

thatofreactantInversionofConfigurationAstereospecificreactionisoneinwhich

stereoisomericstartingmaterialsgive

stereoisomericproducts.Thereactionof2-bromooctanewithNaOH

(inethanol-water)isstereospecific.

(+)-2-BromooctaneÆ(–)-2-Octanol

(–)-2-BromooctaneÆ(+)-2-OctanolStereospecificReactionCHCH3BrCH3(CH2)5CHCH3HO(CH2)5CH3NaOH(S)-(+)-2-Bromooctane(R)-(–)-2-OctanolStereospecificReactionTheFischerprojectionformulafor(+)-2-bromooctane

isshown.WritetheFischerprojectionofthe

(–)-2-octanolformedfromitbynucleophilicsubstitution

withinversionofconfiguration.Problem8.4HBrCH3CH2(CH2)4CH3TheFischerprojectionformulafor(+)-2-bromooctane

isshown.WritetheFischerprojectionofthe

(–)-2-octanolformedfromitbynucleophilicsubstitution

withinversionofconfiguration.HOHCH3CH2(CH2)4CH3Problem8.48.5

HowSN2ReactionsOccur:BrCH....–....HOCH3(CH2)5H3C:BrCH....–....HOCH

Brd–....HO:....d–CH3(CH2)5H3CCH3(CH2)5

CH3:BrCH....–....HOCH

Brd–....HO:....d–CHHO....–....:BrCH3(CH2)5H3C(CH2)5CH3CH3(CH2)5

CH3CH38.6

StericEffectsinSN2ReactionsTherateofnucleophilicsubstitution

bytheSN2mechanismisgoverned

bystericeffects.Crowdingatthecarbonthatbears

theleavinggroupslowstherateof

bimolecularnucleophilicsubstitution.CrowdingattheReactionSiteRBr+LiIÆRI+LiBrAlkyl Class Relative

bromide rateCH3Br Methyl 221,000CH3CH2Br Primary 1,350(CH3)2CHBr Secondary 1(CH3)3CBr Tertiary toosmall

tomeasureTable8.2ReactivitytowardsubstitutionbytheSN2mechanismCH3BrCH3CH2Br(CH3)2CHBr(CH3)3CBrDecreasingSN2ReactivityCH3BrCH3CH2Br(CH3)2CHBr(CH3)3CBrDecreasingSN2ReactivityTherateofnucleophilicsubstitution

bytheSN2mechanismisgoverned

bystericeffects.Crowdingatthecarbonadjacent

totheonethatbearstheleavinggroup

alsoslowstherateofbimolecular

nucleophilicsubstitution,butthe

effectissmaller.CrowdingAdjacenttotheReactionSiteRBr+LiIÆRI+LiBrAlkyl Structure Relative

bromide rateEthyl CH3CH2Br 1.0Propyl CH3CH2CH2Br 0.8Isobutyl (CH3)2CHCH2Br 0.036Neopentyl (CH3)3CCH2Br 0.00002Table8.3EffectofchainbranchingonrateofSN2substitution8.7

NucleophilesandNucleophilicityThenucleophilesdescribedinSections8.1-8.6

havebeenanions.....HO:–....CH3O:–....HS:––CN::etc.NucleophilesThenucleophilesdescribedinSections8.1-8.6

havebeenanions.Notallnucleophilesareanions.Manyareneutral.....HO:–....CH3O:–....HS:––CN::etc.....HOHCH3OH....NH3:forexampleNucleophilesThenucleophilesdescribedinSections8.1-8.6

havebeenanions.Notallnucleophilesareanions.Manyareneutral.Allnucleophiles,however,areLewisbases.....HO:–....CH3O:–....HS:––CN::etc.....HOHCH3OH....NH3:forexampleNucleophiles....HOHCH3OH....forexampleManyofthesolventsinwhichnucleophilicsubstitutionsarecarriedoutarethemselves

nucleophiles.NucleophilesThetermsolvolysisreferstoanucleophilicsubstitutioninwhichthenucleophileisthesolvent.Solvolysis+substitutionbyananionicnucleophileR—X+:Nu—R—Nu+:X—solvolysisR—X+:Nu—HR—Nu—H+:X—stepinwhichnucleophilic

substitutionoccursSolvolysis+substitutionbyananionicnucleophileR—X+:Nu—R—Nu+:X—solvolysisR—X+:Nu—HR—Nu—H+:X—R—Nu+HXproductsofoverallreactionSolvolysisR—X–H+Methanolysisisanucleophilicsubstitutionin

whichmethanolactsasboththesolventand

thenucleophile.Theproductisamethylether.HOCH3::+HOCH3:R+O:CH3R..Example:Methanolysissolvent productfromRX

water(HOH) ROHmethanol(CH3OH) ROCH3ethanol(CH3CH2OH) ROCH2CH3formicacid(HCOH) aceticacid(CH3COH) ROCCH3OROCHOOOTypicalsolventsinsolvolysisTable8.4comparestherelativeratesofnucleophilicsubstitutionofavarietyofnucleophilestowardmethyliodideasthesubstrate.Thestandardofcomparisonismethanol,whichisassignedarelative

rateof1.0.NucleophilicityisameasureofthereactivityofanucleophileRank Nucleophile Relative

ratestrong I-,HS-,RS- >105good Br-,HO-,

104

RO-,CN-,N3-fair NH3,Cl-,F-,RCO2- 103weak H2O,ROH 1veryweak RCO2H 10-2Table8.4Nucleophilicitybasicitysolvationsmallnegativeionsarehighly

solvatedinproticsolventslargenegativeionsarelesssolvatedpolarizabilityMajorfactorsthatcontrolnucleophilicityRank Nucleophile Relative

rategood HO–,RO– 104

fair RCO2– 103weak H2O,ROH 1Whentheattackingatomisthesame(oxygen

inthiscase),nucleophilicityincreaseswith

increasingbasicity.Table8.4Nucleophilicitybasicitysolvationsmallnegativeionsarehighly

solvatedinproticsolventslargenegativeionsarelesssolvatedpolarizabilityMajorfactorsthatcontrolnucleophilicitySolvationofachlorideionbyion-dipoleattractive

forceswithwater.Thenegativelychargedchloride

ioninteractswiththepositivelypolarizedhydrogens

ofwater.Figure8.4Rank Nucleophile Relative

ratestrong I- >105good Br- 104fair Cl-,F- 103Atightsolventshellaroundanionmakesit

lessreactive.Largerionsarelesssolvatedthan

smalleronesandaremorenucleophilic.Table8.4Nucleophilicitybasicitysolvationsmallnegativeionsarehighly

solvatedinproticsolventslargenegativeionsarelesssolvatedpolarizabilityMajorfactorsthatcontrolnucleophilicityRank Nucleophile Relative

reactivitystrong I- >105good Br- 104fair Cl-,F- 103Morepolarizableionsaremorenucleophilicthan

lesspolarizableones.Polarizabilityincreases

withincreasingionicsize.Table8.4Nucleophilicity8.8

UnimolecularNucleophilicSubstitution

SN1Tertiaryalkylhalidesareveryunreactivein

substitutionsthatproceedbytheSN2mechanism.

Dotheyundergonucleophilicsubstitutionatall? Yes.ButbyamechanismdifferentfromSN2.

Themostcommonexamplesareseenin

solvolysisreactions.Aquestion...++HBr....:O::HHCCH3CH3CH3BrCOH........:CH3CH3CH3Exampleofasolvolysis.Hydrolysisoftert-butylbromide.++HBr....:O::HHC++O:HHBr....::–CH3CH3CH3CCH3CH3CH3BrCOH........:CH3CH3CH3Exampleofasolvolysis.Hydrolysisoftert-butylbromide.+O::HHC++O:HHBr....::–CH3CH3CH3CCH3CH3CH3Br....:Thisisthenucleophilicsubstitution

stageofthereaction;theonewith

whichweareconcerned.Exampleofasolvolysis.Hydrolysisoftert-butylbromide.+O::HHC++O:HHBr....::–CH3CH3CH3CCH3CH3CH3Br....:Thereactionrateisindependent

oftheconcentrationofthenucleophile

andfollowsafirst-orderratelaw. rate=k[(CH3)3CBr]Exampleofasolvolysis.Hydrolysisoftert-butylbromide.+O::HH+Br....::–C+O:HHCH3CH3CH3CCH3CH3CH3Br....:Themechanismofthisstepis

notSN2.ItiscalledSN1and

beginswithionizationof(CH3)3CBr.Exampleofasolvolysis.Hydrolysisoftert-butylbromide.rate=k[alkylhalide]First-orderkineticsimpliesaunimolecular

rate-determiningstep.

ProposedmechanismiscalledSN1,whichstandsfor

substitutionnucleophilicunimolecularKineticsandMechanism+Br–..::..unimolecular

slowCCH3CH3CH3Br....:CH3CCH3CH3+Mechanismbimolecular

fastCH3CCH3CH3+O::HHC+O:HHCH3CH3CH3

Mechanismproton

transferROH2+carbocation

formationR+ROHcarbocation

captureRXfirstorderkinetics:rate=k[RX]unimolecularrate-determiningstepcarbocationintermediateratefollowscarbocationstabilityrearrangementssometimesobservedreactionisnotstereospecificmuchracemizationinreactionsof

opticallyactivealkylhalidesCharacteristicsoftheSN1mechanism8.9

CarbocationStabilityandSN1ReactionRatesTherateofnucleophilicsubstitution

bytheSN1mechanismisgoverned

byelectroniceffects.Carbocationformationisrate-determining.

Themorestablethecarbocation,thefaster

itsrateofformation,andthegreaterthe

rateofunimolecularnucleophilicsubstitution.ElectronicEffectsGovernSN1RatesRBrsolvolysisinaqueousformicacidAlkylbromide Class Relativerate CH3Br Methyl 1CH3CH2Br Primary 2(CH3)2CHBr Secondary 43(CH3)3CBr Tertiary 100,000,000Table8.5ReactivitytowardsubstitutionbytheSN1mechanismCH3BrCH3CH2Br(CH3)2CHBr(CH3)3CBrDecreasingSN1Reactivity8.10

StereochemistryofSN1ReactionsNucleophilicsubstitutionsthatexhibit

first-orderkineticbehaviorare

notstereospecific.GeneralizationR-(–)-2-BromooctaneHCCH3BrCH3(CH2)5(R)-(–)-2-Octanol(17%)HCCH3OHCH3(CH2)5CHCH3HO(CH2)5CH3(S)-(+)-2-Octanol(83%)H2OStereochemistryofanSN1ReactionIonizationstep

givescarbocation;three

bondstostereogenic

centerbecomecoplanar+Figure8.8Leavinggroupshields

onefaceofcarbocation;

nucleophileattacks

fasteratoppositeface.+Figure8.8Morethan50%Lessthan50%+8.11

CarbocationRearrangements

inSN1Reactionscarbocationsareintermediates

inSN1reactions,rearrangements

arepossible.Because...CH3CHCHCH3BrCH3H2OCH3COHCH2CH3CH3(93%)ExampleCH3CHCHCH3CH3CH3CCHCH3CH3CH3CHCHCH3BrCH3H2OCH3COHCH2CH3CH3(93%)+H+Example8.12

SolventEffectsSN1ReactionRatesIncrease

inPolarSolventsIngeneral...Solvent Dielectric Relative constant rateaceticacid 6 1methanol 33 4formicacid 58 5,000water 78 150,000Table8.6

SN1ReactivityversusSolventPolarityR+RXd+

RXd-energyofRX

notmuch

affectedby

polarityof

solventtransition

state

stabilizedby

polarsolventR+RXd+

RXd-energyofRX

notmuch

affectedby

polarityof

solventtransition

state

stabilizedby

polarsolventactivationenergy

decreases;rateincreasesSN2ReactionRatesIncreasein

PolarAproticSolventsAnaproticsolventisonethatdoes

nothavean—OHgroup.Ingeneral...Solvent Type Relative

rateCH3OH polarprotic 1H2O polarprotic 7DMSO polaraprotic 1300DMF polaraprotic 2800Acetonitrile polaraprotic 5000CH3CH2CH2CH2Br+N3–Table8.7

SN2ReactivityversusTypeofSolventMechanismSummary

SN1andSN2When...primaryalkylhalidesundergonucleophilic

substitution,theyalwaysreactbytheSN2

mechanismtertiaryalkylhalidesundergonucleophilic

substitution,theyalwaysreactbytheSN1

mechanismsecondaryalkylhalidesundergonucleophilic

substitution,theyreactbytheSN1mechanisminthepresenceofaweak

nucleophile(solvolysis)SN2mechanisminthepresenceofagood

nucleophile8.13

SubstitutionandElimination

asCompetingReactionsAlkylhalidescanreactwithLewisbasesintwodifferent

ways;nucleophilicsubstitutionorelimination.CCHX+Y:–CCYHX:–+CC+HYX:–+b-eliminationnucleophilicsubstitutionTwoReactionTypesHowcanwetellwhichreactionpathwayisfollowed

foraparticularalkylhalide?CCHX+Y:–CCYHX:–+CC+HYX:–+b-eliminationnucleophilicsubstitutionTwoReactionTypesAsystematicapproachistochooseasareference

pointthereactionfollowedbyatypicalalkylhalide

(secondary)withatypicalLewisbase(analkoxide

ion).Themajorreactionofasecondaryalkylhalide

withanalkoxideioniseliminationbytheE2

mechanism.EliminationversusSubstitutionCH3CHCH3BrNaOCH2CH3ethanol,55°CCH3CHCH3OCH2CH3CH3CH=CH2+(87%)(13%)ExampleBrE2Figure8.11CH3CH2O•••••

•–BrSN2Figure8.11CH3CH2O•••••

•–Giventhatthemajorreactionofasecondary

alkylhalidewithanalkoxideioniselimination

bytheE2mechanism,wecanexpectthe

proportionofsubstitutiontoincreasewith: 1) decreasedcrowdingatthecarbonthat

bearstheleavinggroupWhenissubstitutionfavored?Decreasedcrowdingatcarbonthatbearstheleaving

groupincreasessubstitutionrelativetoelimination.

primaryalkylhalideCH3CH2CH2BrNaOCH2CH3ethanol,55°CCH3CH=CH2+CH3CH2CH2OCH2CH3(9%)(91%)UncrowdedAlkylHalidesprimaryalkylhalide+bulkybaseCH3(CH2)15CH2CH2BrKOC(CH3)3tert-butylalcohol,40°C+CH3(CH2)15CH2CH2OC(CH3)3CH3(CH2)15CH=CH2(87%)(13%)Butacrowdedalkoxidebasecanfavoreliminationevenwithaprimaryalkylhalide.Giventhatthemajorreactionofasecondary

alkylhalidewithanalkoxideioniselimination

bytheE2mechanism,wecanexpectthe

proportionofsubstitutiontoincreasewith: 1) decreasedcrowdingatthecarbonthat

bearstheleavinggroup

2)decreasedbasicityofthenucleophileWhenissubstitutionfavored?Weaklybasicnucleophileincreases

substitutionrelativetoeliminationKCNCH3CH(CH2)5CH3ClpKa(HCN)=9.1(70%)DMSOCH3CH(CH2)5CH3CNsecondaryalkylhalide+weaklybasicnucleophileWeaklyBasicNucleophileWeaklybasicnucleophileincreases

substitutionrelativetoeliminationNaN3pKa(HN3)=4.6(75%)secondaryalkylhalide+weaklybasicnucleophileWeaklyBasicNucleophileIN3Tertiaryalkylhalidesaresostericallyhindered

thateliminationisthemajorreactionwithall

anionicnucleophiles.Onlyinsolvolysisreactions

doessubstitutionpredominateoverelimination

withtertiaryalkylhalides.TertiaryAlkylHalides(CH3)2CCH2CH3Br+CH3CCH2CH3OCH2CH3CH3CH2=CCH2CH3CH3CH3C=CHCH3CH3+ethanol,25°C64%36%2Msodiumethoxideinethanol,25°C1%99%Example8.14

SulfonateEsters

as

SubstratesinNucleophilicSubstitutionLeavingGroups wehaveseennumerousexamplesofnucleophilicsubstitutioninwhichXinRXisahalogen

halogenisnottheonlypossibleleavinggroupthoughOtherRXcompoundsROSCH3OOROSOOCH3Alkyl

methanesulfonate

(mesylate)Alkyl

p-toluenesulfonate

(tosylate)undergosamekindsofreactionsasalkylhalidesPreparation(abbreviatedasROTs) ROH+CH3SO2ClpyridineROSOOCH3Tosylatesarepreparedbythereactionof

alcoholswithp-toluenesulfonylchloride

(usuallyinthepresenceofpyridine)TosylatesundergotypicalnucleophilicsubstitutionreactionsHCH2OTsKCNethanol-

waterHCH2CN(86%)ThebestleavinggroupsareweaklybasicTable8.8

ApproximateRelativeReactivityofLeavingGroupsLeavingGroup Relative Conjugateacid Kaof

Rate ofleavinggroup conj.acid

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论