版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter8
NucleophilicSubstitution8.1
FunctionalGroup
TransformationByNucleophilic
SubstitutionY:–RXYR++:X–nucleophileisaLewisbase(electron-pairdonor)oftennegativelychargedandusedas
Na+orK+saltsubstrateisusuallyanalkyl
halide
NucleophilicSubstitutionSubstratecannotbeanavinylichalideoranarylhalide,exceptundercertainconditionstobediscussedinChapter23.XCCXNucleophilicSubstitution+RXgivesanetherAlkoxideionasthenucleophile..O:..R'–+:XR..O..R'–Table8.1ExamplesofNucleophilicSubstitution(CH3)2CHCH2ONa+CH3CH2BrIsobutylalcohol(CH3)2CHCH2OCH2CH3+NaBrEthylisobutylether(66%)Example+RXgivesanesterCarboxylateionasthenucleophile..O:..R'C–+:XR..O..R'C–OOTable8.1ExamplesofNucleophilicSubstitutionOK+CH3(CH2)16CCH3CH2Iacetone,water+KIOCH2CH3CH3(CH2)16CEthyloctadecanoate(95%)OOExample+RXgivesathiolHydrogensulfideionasthenucleophile..S:..H–+:XR..S..H–Table8.1ExamplesofNucleophilicSubstitutionKSH+CH3CH(CH2)6CH3Brethanol,water+KBr2-Nonanethiol(74%)CH3CH(CH2)6CH3SHExample+RXgivesanitrileCyanideionasthenucleophile–+:XR–CN::CN:Table8.1ExamplesofNucleophilicSubstitutionDMSOCyclopentylcyanide(70%)BrNaCN+CN+NaCNExample+RXgivesanalkylazideAzideionasthenucleophile+:XR–..–NNN..::–+..NNN..:–+Table8.1ExamplesofNucleophilicSubstitutionNaN3+CH3CH2CH2CH2CH2I2-Propanol-waterCH3CH2CH2CH2CH2N3+NaIPentylazide(52%)Example+RXgivesanalkyliodideIodideionasthenucleophile+:XR––..:I....:I..:Table8.1ExamplesofNucleophilicSubstitutionNaIissolubleinacetone;
NaClandNaBrarenot
solubleinacetone.acetone+NaICH3CHCH3Br63%+NaBrCH3CHCH3IExample8.2
RelativeReactivityofHalideLeavingGroupsRIRBrRClRFmostreactiveleastreactiveGeneralizationReactivityofhalideleavinggroupsinnucleophilicsubstitutionisthesameasforelimination.BrCH2CH2CH2Cl+NaCNAsingleorganicproductwasobtainedwhen
1-bromo-3-chloropropanewasallowedtoreact
withonemolarequivalentofsodiumcyanidein
aqueousethanol.Whatwasthisproduct?BrisabetterleavinggroupthanClProblem8.2BrCH2CH2CH2Cl+NaCNAsingleorganicproductwasobtainedwhen
1-bromo-3-chloropropanewasallowedtoreact
withonemolarequivalentofsodiumcyanidein
aqueousethanol.Whatwasthisproduct?CH2CH2CH2Cl+NaBrCN:Problem8.28.3
TheSN2MechanismofNucleophilicSubstitutionManynucleophilicsubstitutionsfollowa
second-orderratelaw.
CH3Br+HO–
ÆCH3OH+Br–
rate=k[CH3Br][HO–]
inference:rate-determiningstepisbimolecularKineticsHO–CH3Br+HOCH3Br–+onestep
concerted
BimolecularmechanismHO–CH3Br+HOCH3Br–+onestep
concerted
BimolecularmechanismHO–CH3Br+HOCH3Br–+onestep
concertedHOCH3Brd-d-transitionstate
Bimolecularmechanism8.4
StereochemistryofSN2ReactionsNucleophilicsubstitutionsthatexhibit
second-orderkineticbehaviorare
stereospecificandproceedwith
inversionofconfiguration.Generalizationnucleophileattackscarbon
fromsideoppositebond
totheleavinggroupInversionofConfigurationnucleophileattackscarbon
fromsideoppositebond
totheleavinggroupthree-dimensional
arrangementofbondsin
productisoppositeto
thatofreactantInversionofConfigurationAstereospecificreactionisoneinwhich
stereoisomericstartingmaterialsgive
stereoisomericproducts.Thereactionof2-bromooctanewithNaOH
(inethanol-water)isstereospecific.
(+)-2-BromooctaneÆ(–)-2-Octanol
(–)-2-BromooctaneÆ(+)-2-OctanolStereospecificReactionCHCH3BrCH3(CH2)5CHCH3HO(CH2)5CH3NaOH(S)-(+)-2-Bromooctane(R)-(–)-2-OctanolStereospecificReactionTheFischerprojectionformulafor(+)-2-bromooctane
isshown.WritetheFischerprojectionofthe
(–)-2-octanolformedfromitbynucleophilicsubstitution
withinversionofconfiguration.Problem8.4HBrCH3CH2(CH2)4CH3TheFischerprojectionformulafor(+)-2-bromooctane
isshown.WritetheFischerprojectionofthe
(–)-2-octanolformedfromitbynucleophilicsubstitution
withinversionofconfiguration.HOHCH3CH2(CH2)4CH3Problem8.48.5
HowSN2ReactionsOccur:BrCH....–....HOCH3(CH2)5H3C:BrCH....–....HOCH
Brd–....HO:....d–CH3(CH2)5H3CCH3(CH2)5
CH3:BrCH....–....HOCH
Brd–....HO:....d–CHHO....–....:BrCH3(CH2)5H3C(CH2)5CH3CH3(CH2)5
CH3CH38.6
StericEffectsinSN2ReactionsTherateofnucleophilicsubstitution
bytheSN2mechanismisgoverned
bystericeffects.Crowdingatthecarbonthatbears
theleavinggroupslowstherateof
bimolecularnucleophilicsubstitution.CrowdingattheReactionSiteRBr+LiIÆRI+LiBrAlkyl Class Relative
bromide rateCH3Br Methyl 221,000CH3CH2Br Primary 1,350(CH3)2CHBr Secondary 1(CH3)3CBr Tertiary toosmall
tomeasureTable8.2ReactivitytowardsubstitutionbytheSN2mechanismCH3BrCH3CH2Br(CH3)2CHBr(CH3)3CBrDecreasingSN2ReactivityCH3BrCH3CH2Br(CH3)2CHBr(CH3)3CBrDecreasingSN2ReactivityTherateofnucleophilicsubstitution
bytheSN2mechanismisgoverned
bystericeffects.Crowdingatthecarbonadjacent
totheonethatbearstheleavinggroup
alsoslowstherateofbimolecular
nucleophilicsubstitution,butthe
effectissmaller.CrowdingAdjacenttotheReactionSiteRBr+LiIÆRI+LiBrAlkyl Structure Relative
bromide rateEthyl CH3CH2Br 1.0Propyl CH3CH2CH2Br 0.8Isobutyl (CH3)2CHCH2Br 0.036Neopentyl (CH3)3CCH2Br 0.00002Table8.3EffectofchainbranchingonrateofSN2substitution8.7
NucleophilesandNucleophilicityThenucleophilesdescribedinSections8.1-8.6
havebeenanions.....HO:–....CH3O:–....HS:––CN::etc.NucleophilesThenucleophilesdescribedinSections8.1-8.6
havebeenanions.Notallnucleophilesareanions.Manyareneutral.....HO:–....CH3O:–....HS:––CN::etc.....HOHCH3OH....NH3:forexampleNucleophilesThenucleophilesdescribedinSections8.1-8.6
havebeenanions.Notallnucleophilesareanions.Manyareneutral.Allnucleophiles,however,areLewisbases.....HO:–....CH3O:–....HS:––CN::etc.....HOHCH3OH....NH3:forexampleNucleophiles....HOHCH3OH....forexampleManyofthesolventsinwhichnucleophilicsubstitutionsarecarriedoutarethemselves
nucleophiles.NucleophilesThetermsolvolysisreferstoanucleophilicsubstitutioninwhichthenucleophileisthesolvent.Solvolysis+substitutionbyananionicnucleophileR—X+:Nu—R—Nu+:X—solvolysisR—X+:Nu—HR—Nu—H+:X—stepinwhichnucleophilic
substitutionoccursSolvolysis+substitutionbyananionicnucleophileR—X+:Nu—R—Nu+:X—solvolysisR—X+:Nu—HR—Nu—H+:X—R—Nu+HXproductsofoverallreactionSolvolysisR—X–H+Methanolysisisanucleophilicsubstitutionin
whichmethanolactsasboththesolventand
thenucleophile.Theproductisamethylether.HOCH3::+HOCH3:R+O:CH3R..Example:Methanolysissolvent productfromRX
water(HOH) ROHmethanol(CH3OH) ROCH3ethanol(CH3CH2OH) ROCH2CH3formicacid(HCOH) aceticacid(CH3COH) ROCCH3OROCHOOOTypicalsolventsinsolvolysisTable8.4comparestherelativeratesofnucleophilicsubstitutionofavarietyofnucleophilestowardmethyliodideasthesubstrate.Thestandardofcomparisonismethanol,whichisassignedarelative
rateof1.0.NucleophilicityisameasureofthereactivityofanucleophileRank Nucleophile Relative
ratestrong I-,HS-,RS- >105good Br-,HO-,
104
RO-,CN-,N3-fair NH3,Cl-,F-,RCO2- 103weak H2O,ROH 1veryweak RCO2H 10-2Table8.4Nucleophilicitybasicitysolvationsmallnegativeionsarehighly
solvatedinproticsolventslargenegativeionsarelesssolvatedpolarizabilityMajorfactorsthatcontrolnucleophilicityRank Nucleophile Relative
rategood HO–,RO– 104
fair RCO2– 103weak H2O,ROH 1Whentheattackingatomisthesame(oxygen
inthiscase),nucleophilicityincreaseswith
increasingbasicity.Table8.4Nucleophilicitybasicitysolvationsmallnegativeionsarehighly
solvatedinproticsolventslargenegativeionsarelesssolvatedpolarizabilityMajorfactorsthatcontrolnucleophilicitySolvationofachlorideionbyion-dipoleattractive
forceswithwater.Thenegativelychargedchloride
ioninteractswiththepositivelypolarizedhydrogens
ofwater.Figure8.4Rank Nucleophile Relative
ratestrong I- >105good Br- 104fair Cl-,F- 103Atightsolventshellaroundanionmakesit
lessreactive.Largerionsarelesssolvatedthan
smalleronesandaremorenucleophilic.Table8.4Nucleophilicitybasicitysolvationsmallnegativeionsarehighly
solvatedinproticsolventslargenegativeionsarelesssolvatedpolarizabilityMajorfactorsthatcontrolnucleophilicityRank Nucleophile Relative
reactivitystrong I- >105good Br- 104fair Cl-,F- 103Morepolarizableionsaremorenucleophilicthan
lesspolarizableones.Polarizabilityincreases
withincreasingionicsize.Table8.4Nucleophilicity8.8
UnimolecularNucleophilicSubstitution
SN1Tertiaryalkylhalidesareveryunreactivein
substitutionsthatproceedbytheSN2mechanism.
Dotheyundergonucleophilicsubstitutionatall? Yes.ButbyamechanismdifferentfromSN2.
Themostcommonexamplesareseenin
solvolysisreactions.Aquestion...++HBr....:O::HHCCH3CH3CH3BrCOH........:CH3CH3CH3Exampleofasolvolysis.Hydrolysisoftert-butylbromide.++HBr....:O::HHC++O:HHBr....::–CH3CH3CH3CCH3CH3CH3BrCOH........:CH3CH3CH3Exampleofasolvolysis.Hydrolysisoftert-butylbromide.+O::HHC++O:HHBr....::–CH3CH3CH3CCH3CH3CH3Br....:Thisisthenucleophilicsubstitution
stageofthereaction;theonewith
whichweareconcerned.Exampleofasolvolysis.Hydrolysisoftert-butylbromide.+O::HHC++O:HHBr....::–CH3CH3CH3CCH3CH3CH3Br....:Thereactionrateisindependent
oftheconcentrationofthenucleophile
andfollowsafirst-orderratelaw. rate=k[(CH3)3CBr]Exampleofasolvolysis.Hydrolysisoftert-butylbromide.+O::HH+Br....::–C+O:HHCH3CH3CH3CCH3CH3CH3Br....:Themechanismofthisstepis
notSN2.ItiscalledSN1and
beginswithionizationof(CH3)3CBr.Exampleofasolvolysis.Hydrolysisoftert-butylbromide.rate=k[alkylhalide]First-orderkineticsimpliesaunimolecular
rate-determiningstep.
ProposedmechanismiscalledSN1,whichstandsfor
substitutionnucleophilicunimolecularKineticsandMechanism+Br–..::..unimolecular
slowCCH3CH3CH3Br....:CH3CCH3CH3+Mechanismbimolecular
fastCH3CCH3CH3+O::HHC+O:HHCH3CH3CH3
Mechanismproton
transferROH2+carbocation
formationR+ROHcarbocation
captureRXfirstorderkinetics:rate=k[RX]unimolecularrate-determiningstepcarbocationintermediateratefollowscarbocationstabilityrearrangementssometimesobservedreactionisnotstereospecificmuchracemizationinreactionsof
opticallyactivealkylhalidesCharacteristicsoftheSN1mechanism8.9
CarbocationStabilityandSN1ReactionRatesTherateofnucleophilicsubstitution
bytheSN1mechanismisgoverned
byelectroniceffects.Carbocationformationisrate-determining.
Themorestablethecarbocation,thefaster
itsrateofformation,andthegreaterthe
rateofunimolecularnucleophilicsubstitution.ElectronicEffectsGovernSN1RatesRBrsolvolysisinaqueousformicacidAlkylbromide Class Relativerate CH3Br Methyl 1CH3CH2Br Primary 2(CH3)2CHBr Secondary 43(CH3)3CBr Tertiary 100,000,000Table8.5ReactivitytowardsubstitutionbytheSN1mechanismCH3BrCH3CH2Br(CH3)2CHBr(CH3)3CBrDecreasingSN1Reactivity8.10
StereochemistryofSN1ReactionsNucleophilicsubstitutionsthatexhibit
first-orderkineticbehaviorare
notstereospecific.GeneralizationR-(–)-2-BromooctaneHCCH3BrCH3(CH2)5(R)-(–)-2-Octanol(17%)HCCH3OHCH3(CH2)5CHCH3HO(CH2)5CH3(S)-(+)-2-Octanol(83%)H2OStereochemistryofanSN1ReactionIonizationstep
givescarbocation;three
bondstostereogenic
centerbecomecoplanar+Figure8.8Leavinggroupshields
onefaceofcarbocation;
nucleophileattacks
fasteratoppositeface.+Figure8.8Morethan50%Lessthan50%+8.11
CarbocationRearrangements
inSN1Reactionscarbocationsareintermediates
inSN1reactions,rearrangements
arepossible.Because...CH3CHCHCH3BrCH3H2OCH3COHCH2CH3CH3(93%)ExampleCH3CHCHCH3CH3CH3CCHCH3CH3CH3CHCHCH3BrCH3H2OCH3COHCH2CH3CH3(93%)+H+Example8.12
SolventEffectsSN1ReactionRatesIncrease
inPolarSolventsIngeneral...Solvent Dielectric Relative constant rateaceticacid 6 1methanol 33 4formicacid 58 5,000water 78 150,000Table8.6
SN1ReactivityversusSolventPolarityR+RXd+
RXd-energyofRX
notmuch
affectedby
polarityof
solventtransition
state
stabilizedby
polarsolventR+RXd+
RXd-energyofRX
notmuch
affectedby
polarityof
solventtransition
state
stabilizedby
polarsolventactivationenergy
decreases;rateincreasesSN2ReactionRatesIncreasein
PolarAproticSolventsAnaproticsolventisonethatdoes
nothavean—OHgroup.Ingeneral...Solvent Type Relative
rateCH3OH polarprotic 1H2O polarprotic 7DMSO polaraprotic 1300DMF polaraprotic 2800Acetonitrile polaraprotic 5000CH3CH2CH2CH2Br+N3–Table8.7
SN2ReactivityversusTypeofSolventMechanismSummary
SN1andSN2When...primaryalkylhalidesundergonucleophilic
substitution,theyalwaysreactbytheSN2
mechanismtertiaryalkylhalidesundergonucleophilic
substitution,theyalwaysreactbytheSN1
mechanismsecondaryalkylhalidesundergonucleophilic
substitution,theyreactbytheSN1mechanisminthepresenceofaweak
nucleophile(solvolysis)SN2mechanisminthepresenceofagood
nucleophile8.13
SubstitutionandElimination
asCompetingReactionsAlkylhalidescanreactwithLewisbasesintwodifferent
ways;nucleophilicsubstitutionorelimination.CCHX+Y:–CCYHX:–+CC+HYX:–+b-eliminationnucleophilicsubstitutionTwoReactionTypesHowcanwetellwhichreactionpathwayisfollowed
foraparticularalkylhalide?CCHX+Y:–CCYHX:–+CC+HYX:–+b-eliminationnucleophilicsubstitutionTwoReactionTypesAsystematicapproachistochooseasareference
pointthereactionfollowedbyatypicalalkylhalide
(secondary)withatypicalLewisbase(analkoxide
ion).Themajorreactionofasecondaryalkylhalide
withanalkoxideioniseliminationbytheE2
mechanism.EliminationversusSubstitutionCH3CHCH3BrNaOCH2CH3ethanol,55°CCH3CHCH3OCH2CH3CH3CH=CH2+(87%)(13%)ExampleBrE2Figure8.11CH3CH2O•••••
•–BrSN2Figure8.11CH3CH2O•••••
•–Giventhatthemajorreactionofasecondary
alkylhalidewithanalkoxideioniselimination
bytheE2mechanism,wecanexpectthe
proportionofsubstitutiontoincreasewith: 1) decreasedcrowdingatthecarbonthat
bearstheleavinggroupWhenissubstitutionfavored?Decreasedcrowdingatcarbonthatbearstheleaving
groupincreasessubstitutionrelativetoelimination.
primaryalkylhalideCH3CH2CH2BrNaOCH2CH3ethanol,55°CCH3CH=CH2+CH3CH2CH2OCH2CH3(9%)(91%)UncrowdedAlkylHalidesprimaryalkylhalide+bulkybaseCH3(CH2)15CH2CH2BrKOC(CH3)3tert-butylalcohol,40°C+CH3(CH2)15CH2CH2OC(CH3)3CH3(CH2)15CH=CH2(87%)(13%)Butacrowdedalkoxidebasecanfavoreliminationevenwithaprimaryalkylhalide.Giventhatthemajorreactionofasecondary
alkylhalidewithanalkoxideioniselimination
bytheE2mechanism,wecanexpectthe
proportionofsubstitutiontoincreasewith: 1) decreasedcrowdingatthecarbonthat
bearstheleavinggroup
2)decreasedbasicityofthenucleophileWhenissubstitutionfavored?Weaklybasicnucleophileincreases
substitutionrelativetoeliminationKCNCH3CH(CH2)5CH3ClpKa(HCN)=9.1(70%)DMSOCH3CH(CH2)5CH3CNsecondaryalkylhalide+weaklybasicnucleophileWeaklyBasicNucleophileWeaklybasicnucleophileincreases
substitutionrelativetoeliminationNaN3pKa(HN3)=4.6(75%)secondaryalkylhalide+weaklybasicnucleophileWeaklyBasicNucleophileIN3Tertiaryalkylhalidesaresostericallyhindered
thateliminationisthemajorreactionwithall
anionicnucleophiles.Onlyinsolvolysisreactions
doessubstitutionpredominateoverelimination
withtertiaryalkylhalides.TertiaryAlkylHalides(CH3)2CCH2CH3Br+CH3CCH2CH3OCH2CH3CH3CH2=CCH2CH3CH3CH3C=CHCH3CH3+ethanol,25°C64%36%2Msodiumethoxideinethanol,25°C1%99%Example8.14
SulfonateEsters
as
SubstratesinNucleophilicSubstitutionLeavingGroups wehaveseennumerousexamplesofnucleophilicsubstitutioninwhichXinRXisahalogen
halogenisnottheonlypossibleleavinggroupthoughOtherRXcompoundsROSCH3OOROSOOCH3Alkyl
methanesulfonate
(mesylate)Alkyl
p-toluenesulfonate
(tosylate)undergosamekindsofreactionsasalkylhalidesPreparation(abbreviatedasROTs) ROH+CH3SO2ClpyridineROSOOCH3Tosylatesarepreparedbythereactionof
alcoholswithp-toluenesulfonylchloride
(usuallyinthepresenceofpyridine)TosylatesundergotypicalnucleophilicsubstitutionreactionsHCH2OTsKCNethanol-
waterHCH2CN(86%)ThebestleavinggroupsareweaklybasicTable8.8
ApproximateRelativeReactivityofLeavingGroupsLeavingGroup Relative Conjugateacid Kaof
Rate ofleavinggroup conj.acid
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拆迁补偿房买卖合同注意事项
- 企业安全保证书撰写技巧解析
- 小班数学活动大与小
- 企业数字化转型中的数据分析与业务优化考核试卷
- 医疗卫生材料的进口与出口管理考核试卷
- 物流园购车合同模板
- 普通商务合同范例
- 淘宝变更合同模板
- 信达公司法律服务合同范例
- 桥头饭堂食材配送合同模板
- 冷库安全管理规范
- 高质量的幼儿园教育
- GB/T 18690.4-2023农业灌溉设备微灌用过滤器第4部分:颗粒介质过滤器
- 基于PLC的风力发电机偏航控制系统设计
- 推进班组信息化建设:利用信息技术提高工作效率
- 沥青路面铣刨重新施工方案
- 英语15选10练习题
- DB4501-T 0008-2023 化妆品行业放心消费单位创建规范
- 锅炉水压试验报告
- 低压开关柜出厂检验报告-5
- 第一章-公路概论课件
评论
0/150
提交评论