




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为()A.2 B.4 C.8 D.112.如图,以点为位似中心,将放大得到.若,则与的位似比为().A. B. C. D.3.如图,下列条件中,能判定的是()A. B. C. D.4.一个长方形的面积为,且一边长为,则另一边的长为()A. B. C. D.5.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段6.设A(x1,y1)、B(x2,y2)是反比例函数图象上的两点.若x1<x2<0,则y1与y2之间的关系是(
)A.y1<y2<0
B.y2<y1<0
C.y2>y1>0
D.y1>y2>07.有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是()A.甲 B.乙 C.丙 D.丁8.已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有()个A.5 B.4 C.3 D.29.下列说法错误的是()A.将数用科学记数法表示为B.的平方根为C.无限小数是无理数D.比更大,比更小10.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定11.已知抛物线具有如下性质:抛物线上任意一点到定点的距离与到轴的距离相等.如图点的坐标为,是抛物线上一动点,则周长的最小值是()A. B. C. D.12.在Rt△ABC中,∠C=90°,若,则∠B的度数是()A.30° B.45° C.60° D.75°二、填空题(每题4分,共24分)13.分解因式:x3﹣16x=______.14.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.15.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.16.已知a、b、c满足,a、b、c都不为0,则=_____.17.如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,点是对称轴右侧抛物线上一点,且,则点的坐标为___________.18.已知菱形ABCD的两条对角线相交于点O,若AB=6,∠BDC=30°,则菱形的面积为.三、解答题(共78分)19.(8分)解方程:
20.(8分)某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.21.(8分)如图,为的直径,点为延长线上的一点,过点作的切线,切点为,过两点分别作的垂线,垂足分别为,连接.求证:(1)平分;(2)若,求的长.22.(10分)用适当的方法解方程:(1)x2+2x=0(2)x2﹣4x+1=023.(10分)在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别.(1)随机地从箱子里取出一个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.24.(10分)如图,反比例函数y=(x>0)和一次函数y=mx+n的图象过格点(网格线的交点)B、P.(1)求反比例函数和一次函数的解析式;(2)观察图象,直接写出一次函数值大于反比例函数值时x的取值范围是:.(3)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.25.(12分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.26.某校的学生除了体育课要进行体育锻炼外,寒暑假期间还要自己抽时间进行体育锻炼,为了了解同学们假期体育锻炼的情况,开学时体育老师随机抽取了部分同学进行调查,按锻炼的时间x(分钟)分为以下四类:A类(),B类(),C类(),D类(),对调查结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中的信息解答下列各题:(1)扇形统计图中D类所对应的圆心角度数为,并补全折线统计图;(2)现从A类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好是一男一女的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:=1.2,
解得:n=2.
故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.2、A【解析】以点为个位中心,将放大得到,,可得,因此与的位似比为,故选A.3、D【分析】根据相似三角形的各个判定定理逐一分析即可.【详解】解:∵∠A=∠A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但∠A不是两组对应边的夹角,不能判定,故C选项不符合题意;若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意.故选D.【点睛】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键.4、A【分析】根据长方形的面积公式结合多项式除以多项式运算法则解题即可.【详解】长方形的面积为,且一边长为,另一边的长为故选:A.【点睛】本题考查多项式除以单项式、长方形的面积等知识,是常见考点,难度较易,掌握相关知识是解题关键.5、A【解析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A不正确,符合题意;B.若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm,C正确,不符合题意;D.∵1:2=2:4,∴四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.【点睛】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.6、B【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x1<0即可得出结论.【详解】∵反比例函数中,k=1>0,∴函数图象的两个分支位于一、三象限,且在每一象限内y随x的增大而减小,∵x1<x1<0,
∴0>y1>y1.故选:B【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7、D【分析】根据相似三角形的性质求得甲的面积和丙的面积,进一步求得乙和丁的面积,比较即可求得.【详解】解:如图:∵AD⊥BC,AB=AC,∴BD=CD=5+2=7,∵AD=2+1=3,∴S△ABD=S△ACD==∵EF∥AD,∴△EBF∽△ABD,∴=()2=,∴S甲=,∴S乙=,同理=()2=,∴S丙=,∴S丁=﹣=,∵,∴面积最大的是丁,故选:D.【点睛】本题考查了三角形相似的判定和性质,相似三角形面积的比等于相似比的平方.解题的关键是熟练掌握相似三角形的判定和性质进行解题.8、C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性逐个进行判断,得出答案.【详解】由抛物线的开口向上,可得a>0,对称轴是x=﹣1,可得a、b同号,即b>0,抛物线与y轴交在y轴的负半轴,c<0,因此abc<0,故①不符合题意;对称轴是x=﹣1,即﹣=﹣1,即2a﹣b=0,因此②符合题意;抛物线的对称轴为x=﹣1,与x轴的一个交点B的坐标为(1,0),可知与x轴的另一个交点为(﹣3,0),因此一元二次方程ax2+bx+c=0的两个根是﹣3和1,故③符合题意;由图象可知y>0时,相应的x的取值范围为x<﹣3或x>1,因此④不符合题意;在对称轴的右侧,y随x的增大而增大,因此当x>0时,y随x的增大而增大是正确的,因此⑤符合题意;由抛物线的对称性,在对称轴的左侧y随x的增大而减小,∵﹣4<﹣2,∴y1>y2,(3,y3)l离对称轴远因此y3>y1,因此y3>y1>y2,因此⑥不符合题意;综上所述,正确的结论有3个,故选:C.【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a、b、c的值决定抛物线的位置,抛物线的对称性是解决问题的关键.9、C【分析】根据科学记数法的表示方法、平方根的定义、无理数的定义及实数比较大小的方法,进行逐项判断即可.【详解】A.65800000=6.58×107,故本选项正确;B.9的平方根为:,故本选项正确;C.无限不循环小数是无理数,而无限小数包含无限循环小数和无限不循环小数,故本选项错误;D.,因为,所以,即,故本选项正确.故选:C.【点睛】本题考查科学记数法、平方根、无理数的概念及实数比较大小,明确各定义和方法即可,难度不大.10、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.11、C【分析】作过作轴于点,过点作轴于点,交抛物线于点,由结合,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值,再由点、的坐标即可得出、的长度,进而得出周长的最小值.【详解】解:作过作轴于点,由题意可知:,∴周长=,又∵点到直线之间垂线段最短,∴当、、三点共线时最小,此时周长取最小值,过点作轴于点,交抛物线于点,此时周长最小值,、,,,周长的最小值.故选:.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.12、C【分析】根据特殊角的函数值可得∠A度数,进一步利用两个锐角互余求得∠B度数.【详解】解:∵,
∴∠A=30°,∵∠C=90°,
∴∠B=90°-∠A=60°故选:C.【点睛】此题主要考查了特殊角的函数值,以及直角三角形两个锐角互余,熟练掌握特殊角函数值是解题的关键.二、填空题(每题4分,共24分)13、x(x+4)(x–4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).14、1【解析】由,和坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵,和坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;⑤从图象上看,当或,函数值要大于当时的,因此⑤是不正确的;故答案是:1【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.15、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.16、【解析】设则所以,故答案为:.17、【分析】根据已知条件,需要构造直角三角形,过D做DH⊥CR于点H,用含字母的代数式表示出PH、RH,即可求解.【详解】解:过点D作DQ⊥x轴于Q,交CB延长线于R,作DH⊥CR于H,过R做RF⊥y轴于F,∵抛物线与轴交于、两点,与轴交于点,∴A(1,0),B(2,0)C(0,2)∴直线BC的解析式为y=-x+2设点D坐标为(m,m²-3m+2),R(m,-m+2),∴DR=m²-3m+2-(-m+2)=m²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵经检验是方程的解.故答案为:【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.18、18【详解】∵ABCD是菱形,两条对角线相交于点O,AB=6∴CD=AB=6,AC⊥BD,且OA=OC,OB=OD在Rt△COD中,∵CD=6,∠BDC=30°∴∴∴三、解答题(共78分)19、x1=4,x2=-2【解析】试题分析:因式分解法解方程.试题解析:x2-2x-8=0(x-4)(x+2)=0x1=4,x2=-220、(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:=,乙的方差是:=.所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.21、(1)见解析;(2)【分析】(1)连接OM,可证OM∥AC,得出∠CAM=∠AMO,由OA=OM可得∠OAM=∠AMO,从而可得出结果;(2)先求出∠MOP的度数,OB的长度,则用弧长公式可求出的长.【详解】解:(1)连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为.【点睛】本题考查了圆的切线的性质,弧长的计算,平行线的判定与性质以及等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题.22、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.【分析】根据方程的特点可适当选择解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案.【详解】(1)或所以,(2),即所以,【点睛】本题考查了解元二次方程的方法,能够根据题目的结构特点选择合适的方法解一元二次方程,熟悉直接开平方法、配方法、公式法以及因式分解法的具体步骤是解题的关键.23、(1);(2)【分析】(1)已知由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,所以可利用概率公式求解即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.【详解】解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:.考点:用列表法或树状图法求概率.24、(1)y=,y=﹣+3;(2)2<x<1;(3)见解析【分析】(1)利用待定系数法即可求出反比例函数和一次函数的解析式;(2)根据图象即可求得;(3)根据矩形满足的两个条件画出符合要求的两个矩形即可.【详解】(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=1,∴反比例函数的解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供热公司收购合同范本
- 买方单方面违约合同范本
- 上海租赁牌照合同范本
- 2024年遵义市赤水市公益性岗位人员招聘考试真题
- Unit 1 A new start:Understanding ideas ① 教学设计 -2024-2025学年外研版(2024年)英语七年级 上册
- 出售大型废船合同范本
- 临时供电协议合同范本
- 2024年民主与科学杂志社招聘考试真题
- 劳务合同范本修灶台
- 上海疫情物质供货合同范本
- 2023新一代变电站二次系统技术规范第3部分:综合应用主机
- 2024年高考真题-英语(新高考Ⅰ卷) 含解析
- TSHJX 061-2024 上海市域铁路工程施工监测技术规范
- 新能源汽车车位租赁合同
- 行为矫正原理与方法课件
- 《人工智能导论》(第2版)高职全套教学课件
- 39 《出师表》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 蛇胆川贝液在动物模型中的药理作用研究
- GB/T 44260-2024虚拟电厂资源配置与评估技术规范
- 中国煤炭地质总局公开招聘报名表
- AQ 1064-2008 煤矿用防爆柴油机无轨胶轮车安全使用规范(正式版)
评论
0/150
提交评论