2023届江苏省无锡市河塘中学数学九上期末综合测试模拟试题含解析_第1页
2023届江苏省无锡市河塘中学数学九上期末综合测试模拟试题含解析_第2页
2023届江苏省无锡市河塘中学数学九上期末综合测试模拟试题含解析_第3页
2023届江苏省无锡市河塘中学数学九上期末综合测试模拟试题含解析_第4页
2023届江苏省无锡市河塘中学数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,,D为AC上一点,连接BD,且,则DC长为()A.2 B. C. D.52.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°3.已知k1<0<k2,则函数y=k1x和的图象大致是()A. B. C. D.4.如图为二次函数的图象,则下列说法:①;②;③;④;⑤,其中正确的个数为()A.1 B.2 C.3 D.45.如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A.米 B.米 C.米 D.米6.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A. B. C. D.7.如图,正六边形ABCDEF的半径OA=OD=2,则点B关于原点O的对称点坐标为()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)8.方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=09.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,10.在直角坐标系中,点关于坐标原点的对称点的坐标为()A. B. C. D.二、填空题(每小题3分,共24分)11.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率0.1060.0970.1010.0980.0990.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.12.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是_____cm.13.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.14.方程的解是______________.15.方程x2﹣9x=0的根是_____.16.如图,圆锥的底面直径,母线的中点处有一食物,一只小蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为___________17.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于点A和点B,若C为x轴上任意一点,连接AC,BC,则的面积是________.18.如图,将Rt△ABC绕着顶点A逆时针旋转使得点C落在AB上的C′处,点B落在B′处,联结BB′,如果AC=4,AB=5,那么BB′=_____.三、解答题(共66分)19.(10分)如图,在中,,,,点在上,,以为半径的交于点,的垂直平分线交于点,交于点,连接.(1)求证:直线是的切线;(2)求线段的长.20.(6分)正比例函数y=2x与反比例函数y=的图象有一个交点的纵坐标为1.(1)求m的值;(2)请结合图象求关于x的不等式2x≤的解集.21.(6分)矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上.(1)如图1,连接、、、,则与的大小关系为______________.(2)如图2,当点位于线段上时,求证:;(3)如图3,当点位于线段的延长线上时,,,求四边形的面积.22.(8分)把一根长为米的铁丝折成一个矩形,矩形的一边长为米,面积为S米,(1)求S关于的函数表达式和的取值范围(2)为何值时,S最大?最大为多少?23.(8分)探究问题:⑴方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.⑵方法迁移:如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.⑶问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).24.(8分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?25.(10分)如图,中,,是的中点,于.(1)求证:;(2)当时,求的度数.26.(10分)已知,直线与抛物线相交于、两点,且的坐标是(1)求,的值;(2)抛物线的表达式及其对称轴和顶点坐标.

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用等腰三角形的性质得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形对应边成比例即可求出DC的长.【详解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故选C.【点睛】本题考查了等腰三角形的性质,相似三角形的判定与性质,解题的关键是找到两组对应角相等判定相似三角形.2、A【解析】试题分析:∵弧长,∴圆心角.故选A.3、D【解析】试题分析::∵k1<0<k2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D.考点:1.反比例函数的图象;2.正比例函数的图象.4、D【分析】根据抛物线的开口向下可知a<0,由此可判断①;根据抛物线的对称轴可判断②;根据x=1时y的值可判断③;根据抛物线与x轴交点的个数可判断④;根据x=-2时,y的值可判断⑤.【详解】抛物线开口向下,∴a<0,故①错误;∵抛物线与x轴两交点坐标为(-1,0)、(3,0),∴抛物线的对称轴为x==1,∴2a+b=0,故②正确;观察可知当x=1时,函数有最大值,a+b+c>0,故③正确;∵抛物线与x轴有两交点坐标,∴△>0,故④正确;观察图形可知当x=-2时,函数值为负数,即4a-2b+c<0,故⑤正确,故选D.【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.5、A【详解】解:由题意,在Rt△ABC中,∠ABC=31°,由三角函数关系可知,

AC=AB•sinα=9sin31°(米).

故选A.【点睛】本题主要考查了三角函数关系在直角三角形中的应用.6、D【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据相似三角形的判定得出△BEF∽△DCF,根据相似三角形的性质和三角形面积公式求出即可.【详解】解:∵四边形ABCD是平行四边形,E为AB的中点,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故选D.【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.7、D【分析】根据正六边形的性质,解直角三角形即可得到结论.【详解】解:连接OB,∵正六边形ABCDEF的半径OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴点B关于原点O的对称点坐标为(,﹣1).故选:D.【点睛】本题考查了正六边形的性质和解直角三角形的相关知识,解决本题的关键是熟练掌握正六边形的性质,能够得到相应角的度数.8、C【解析】试题解析:x2-x=0,x(x-1)=0,x=0或x-1=0,所以x1=0,x2=1.故选C.考点:解一元二次方程-因式分解法.9、D【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.10、D【分析】根据关于原点对称的点的坐标特征:横、纵坐标都相反,进行判断即可.【详解】点A(-1,2)关于原点的对称点的坐标为(1,-2).故选:D.【点睛】本题考查点的坐标特征,熟记特殊点的坐标特征是关键.二、填空题(每小题3分,共24分)11、0.23【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,

所以苹果的损坏概率为0.2.

根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克.

设每千克苹果的销售价为x元,则应有9000x=2.2×20000+23000,

解得x=3.

答:出售苹果时每千克大约定价为3元可获利润23000元.

故答案为:0.2,3.【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.12、1【解析】利用底面周长=展开图的弧长可得.【详解】解:设这个扇形铁皮的半径为rcm,由题意得=π×80,解得r=1.故这个扇形铁皮的半径为1cm,故答案为1.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.13、x(x-12)=864【解析】设矩形田地的长为x步,那么宽就应该是(x−12)步.根据矩形面积=长×宽,得:x(x−12)=864.故答案为x(x−12)=864.14、,【分析】根据题意先移项,再提取公因式,求出x的值即可.【详解】解:移项得,x(x-3)-x=0,提取公因式得,x(x-3-1)=0,即x(x-4)=0,解得,.故答案为:,.【点睛】本题考查的是解一元二次方程-因式分解法,熟练利用因式分解法解一元二次方程是解答此题的关键.15、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.16、15【分析】先将圆锥的侧面展开图画出来,然后根据弧长公式求出的度数,然后利用等边三角形的性质和特殊角的三角函数在即可求出AD的长度.【详解】圆锥的侧面展开图如下图:∵圆锥的底面直径∴底面周长为设则有解得又∴为等边三角形为PB中点∴蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为故答案为:.【点睛】本题主要考查圆锥的侧面展开图,弧长公式和解直角三角形,掌握弧长公式和特殊角的三角函数值是解题的关键.17、1【分析】连接OA、OB,如图,由于AB∥x轴,根据反比例函数k的几何意义得到S△OAP=2,S△OBP=1,则S△OAB=1,然后利用AB∥OC,根据三角形面积公式即可得到S△CAB=S△OAB=1.【详解】连接OA,OB,如图轴,,,∴,,∴.故答案为:1.【点睛】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.18、【分析】根据旋转的性质和勾股定理,在Rt△BC′B′中,求出BC′,B′C′即可解决问题.【详解】解:在Rt△ABC中,∵AC=4,AB=5,∠C=90°,∴BC===3,∵AC=AC′=4,BC=B′C′=3,∴BC′=AB=AC′=5﹣4=1,∵∠BC′B′=90°,∴BB′===,故答案为.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质和利用勾股定理解直角三角形是解决此题的关键.三、解答题(共66分)19、(1)见解析;(2).【分析】(1)连接,利用垂直平分线的性质及等腰三角形的性质通过等量代换可得出,即,则,则结论可证;(2)连接,设,,利用勾股定理即可求出x的值.【详解】(1)证明:连接,∵垂直平分,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴是的切线.(2)解:连接,OD,设,,∵,∴,解得,∴.【点睛】本题主要考查切线的判定及勾股定理,掌握切线的判定方法及勾股定理是解题的关键.20、(1)8;(2)x≤﹣2或0<x≤2【分析】(1)先利用正比例函数解析式确定一个交点坐标,然后把交点坐标代入y=中可求出m的值;(2)利用正比例函数和反比例函数的性质得到正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣1),然后几何图像写出正比例函数图像不在反比例函数图像上方所对应的自变量的范围即可.【详解】解:(1)当y=1时,2x=1,解得x=2,则正比例函数y=2x与反比例函数y=的图像的一个交点坐标为(2,1),把(2,1)代入y=得m=2×1=8;(2)∵正比例函数y=2x与反比例函数y=的图像有一个交点坐标为(2,1),∴正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣1),如图,当x≤﹣2或0<x≤2时,2x≤,∴关于x的不等式2x≤的解集为x≤﹣2或0<x≤2.【点睛】本题主要考查的是正比例函数与反比例函数的基本性质以及两个函数交点坐标,掌握这几点是解题的关键.21、(1)相等;(2)见解析;(3)【分析】(1)由旋转得:旋转角相等,可得结论;

(2)证明△AOB≌△EOF(SAS),得∠OAB=∠OEF,根据平角的定义可得结论;

(3)如解图,根据等腰三角形的性质得:∠OFB=∠OBF=30°,∠OAE=∠AEO=30°,根据30度角的直角三角形的性质分别求得OB、OG、BF,勾股定理求得BE的长,再根据三角形面积公式即可求得结论.【详解】(1)由旋转得:∠AOE=∠BOF=,

故答案为:相等;(2)∵,∴,在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,∵OA=OE,∴,∴;(3)如图,过点O作,垂足为G,根据旋转的性质知:∠BOF=120°,∠AOB=∠EOF,OB=OF,△BOF中,∠OFB=∠OBF=30°,

∴∠ABO=60°,

△AOE中,∠AOE=120°,OA=OE,

∴∠OAE=∠AEO=30°,

∴∠AOB=90°,

在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,在中,∠AOB=90°,,∠OAB=30°,∴,在中,∠OGB=90°,,∠OBG=30°,∴,,∴,在中,∠EBF=90°,,,∴,∴.【点睛】本题是四边形的综合题,题目考查了几何图形的旋转变换,四边形的面积,直角三角形30度角的性质等知识,解决此类问题的关键分析图形的旋转情况,在旋转过程中,旋转角相等,对应线段相等.22、(1)S=-+2x(0<x<2);(2)x=1时,面积最大,最大为1米2【分析】(1)根据矩形周长为米,一边长为x,得出另一边为2-x,再根据矩形的面积公式即可得出答案;(2)根据(1)得出的关系式,利用配方法进行整理,可求出函数的最大值,从而得出答案.【详解】解:(1)∵矩形的一边长为x米,∴另一边长为2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根据(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一边长为1米时,面积最大为1米2,【点睛】本题考查的是二次函数的实际应用以及矩形面积的计算公式,关键是根据矩形的面积公式构建二次函数解决最值问题.23、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶当∠B与∠D互补时,可使得DE+BF=EF.【分析】(1)根据正方形性质填空;(2)假设∠BAD的度数为,将△ADE绕点A顺时针旋转得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,结合正方形性质可得DE+BF=EF.⑶根据题意可得,当∠B与∠D互补时,可使得DE+BF=EF.【详解】⑴EAF、△EAF、GF.⑵DE+BF=EF,理由如下:假设∠BAD的度数为,将△ADE绕点A顺时针旋转得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论