2023届江苏省南京市高淳区九年级数学第一学期期末达标测试试题含解析_第1页
2023届江苏省南京市高淳区九年级数学第一学期期末达标测试试题含解析_第2页
2023届江苏省南京市高淳区九年级数学第一学期期末达标测试试题含解析_第3页
2023届江苏省南京市高淳区九年级数学第一学期期末达标测试试题含解析_第4页
2023届江苏省南京市高淳区九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA= C.cosB= D.tanB=2.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x="1".其中正确的有A.1个 B.2个 C.3个 D.4个3.抛物线的对称轴为A. B. C. D.4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55° B.70° C.110° D.125°5.下列图形中,不是轴对称图形的是()A. B. C. D.6.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°7.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是()A. B. C. D.8.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣39.有三张正面分别标有数字-2,3,4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A. B. C. D.10.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%二、填空题(每小题3分,共24分)11.已知,则的值为______.12.已知四条线段a、2、6、a+1成比例,则a的值为_____.13.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则的面积为_____________.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留)15.有一列数,,,,,,则第个数是_______.16.已知,则=_____.17.若抛物线y=2x2+6x+m与x轴有两个交点,则m的取值范围是_____.18.在一个不透明的布袋中装有红色和白色两种颜色的小球(除颜色以外没有任何区别),随机摸出一球,摸到红球的概率是,其中白球6个,则红球有________个.三、解答题(共66分)19.(10分)有一个人患了流感,经过两轮传染后共有81人患了流感.每轮传染中平均一个人传染了几个人?按照这样的速度传染,第三轮将又有多少人被传染?20.(6分)某公司营销两种产品,根据市场调研,确定两条信息:信息1:销售种产品所获利润(万元)与所销售产品(吨)之间存在二次函数关系,如图所示信息2:销售种产品所获利润(万元)与销售产品(吨)之间存在正比例函数关系根据以上信息,解答下列问题:(1)求二次函数的表达式;(2)该公司准备购进两种产品共10吨,请设计一个营销方案使销售两种产品获得的利润之和最大,最大利润是多少万元?21.(6分)如图,AB是⊙O的直径,C是⊙O上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.22.(8分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.23.(8分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.24.(8分)如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.25.(10分)如图,在中,弦垂直于直径,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,①求证:四边形是菱形;②若,求的半径长.26.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=1.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据三角函数的定义求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=1.∴AC=,∴sinA=,tanA=,cosB=,tanB=.故选:D.【点睛】本题考查了解直角三角形,解答此题关键是正确理解和运用锐角三角函数的定义.2、B【解析】试题分析:∵当y1=y2时,即时,解得:x=0或x=2,∴由函数图象可以得出当x>2时,y2>y1;当0<x<2时,y1>y2;当x<0时,y2>y1.∴①错误.∵当x<0时,-直线的值都随x的增大而增大,∴当x<0时,x值越大,M值越大.∴②正确.∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).∴使得M=2的x值是1或.∴④错误.综上所述,正确的有②③2个.故选B.3、B【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,

∴对称轴是直线x=0,即为y轴.

故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.4、D【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=55°,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=180°−∠A=125°,故选:C.【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质.5、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,

∴α=90°-38°=52°.

故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.7、D【分析】利用概率公式直接求解即可.【详解】解:袋子装有个球,其中个红球,个白球,从中任意摸出一个球,则摸出的球是红球的概率是:故选:.【点睛】本题考查的是利用概率的定义求事件的概率.8、C【解析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.9、C【详解】画树状图得:

∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,

∴两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.10、D【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【详解】设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选:D.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.二、填空题(每小题3分,共24分)11、【分析】设=k,用k表示出a、b、c,代入求值即可.【详解】解:设=k,∴a=2k,b=3k,c=4k,∴==.故答案是:.【点睛】本题考查了比例的性质,涉及到连比时一般假设比值为k,这是常用的方法.12、3【分析】由四条线段a、2、6、a+1成比例,根据成比例线段的定义,即可得=,即可求得a的值.【详解】解:∵四条线段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【点睛】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d.13、1【分析】先根据正方形的性质可得,从而可得,再根据相似三角形的判定与性质可得,从而可得CF的长,又根据线段的和差可得DF的长,然后根据相似三角形的判定与性质可得,从而可得出DE的长,最后根据直角三角形的面积公式即可得.【详解】四边形ABCD是正方形,,即在和中,,即解得又,即,即解得则的面积为故答案为:1.【点睛】本题考查了正方形的性质、相似三角形的判定定理与性质等知识点,熟练掌握相似三角形的判定定理与性质是解题关键.14、【解析】根据菱形的性质得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°∴AO=AB=1,由勾股定理得,又∵AC=2,BD=2,∴调影部分的面积为:故答案为:【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.15、【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.16、【解析】根据题意,设x=5k,y=3k,代入即可求得的值.【详解】解:由题意,设x=5k,y=3k,∴==.故答案为.【点睛】本题考查了分式的求值,解题的关键是根据分式的性质对已知分式进行变形.17、【分析】由抛物线与x轴有两个交点,可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=2x2+6x+m与x轴有两个交点,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案为:m.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac>0时,抛物线与x轴有2个交点”是解答本题的关键.18、1【分析】设红球有x个,根据题意列出方程,解方程并检验即可.【详解】解:设红球有x个,由题意得:,解得,经检验,是原分式方程的解,所以,红球有1个,故答案为:1.【点睛】本题主要考查根据概率求数量,掌握概率的求法是解题的关键.三、解答题(共66分)19、(1)8人;(2)648人.【分析】(1)设每轮传染中平均一个人传染了x个人,根据人患了流感,经过两轮传染后共有81人患了流感,列方程求解;(2)根据(1)中所求数据,进而得到第三轮被传染的人数.【详解】解:(1)设每轮传染中平均一个人传染了x个人,依题意有x+1+(x+1)x=81,解得x1=8,x2=﹣10(不符合题意舍去).答:每轮传染中平均一个人传染了8个人.(2)8×81=648(人).答:第三轮将又有648人被传染人.【点睛】本题主要考查一元一次方程的实际应用,注意根据题中已知等量关系列出方程式是关键.20、(1);(2)购进A产品6吨,购进B产品4吨,利润之和最大,最大为6.6万元【分析】(1)由抛物线过原点可设y与x间的函数关系式为y=ax2+bx+c,再利用待定系数法求解可得;

(2)设购进A产品m吨,购进B产品(10−m)吨,销售A、B两种产品获得的利润之和为W元,根据:A产品利润+B产品利润=总利润可得W=−0.1m2+1.5m+0.3(10−m),配方后根据二次函数的性质即可知最值情况.【详解】解:(1)设二次函数的表达式为y=ax2+bx+c,

由图象,得抛物线过点(0,0),(1,1.4),(3,3.6),

将三点的坐标代入表达式,

得,

解得

所以二次函数的表达式为y=−0.1x2+1.5x;

(2)设购进A产品m吨,购进B产品(10−m)吨,销售A、B两种产品获得的利润之和为W元,

则W=−0.1m2+1.5m+0.3(10−m),

=−0.1m2+1.2m+3,

=−0.1(m−6)2+6.6,

∵−0.1<0,

∴∴当m=6时,W取得最大值,最大值为6.6万元,

答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.【点睛】本题主要考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,(2)中整理得到所获利润与购进A产品的吨数的关系式是解题的关键.21、+【分析】根据扇形的面积公式进行计算即可.【详解】解:连接OC且过点O作AC的垂线,垂足为D,如图所示.∵OA=OC∴AD=1在Rt△AOD中∵∠DAO=30°∴∴OD=,∴由OA=OC;∠DAO=30可得∠COB=60°∴S扇形BOC=∴S阴影=S△AOC+S扇形BOC=+【点睛】本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键.22、(1)A社区居民人口至少有2.1万人;(2)10.【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;

(2)A社区的知晓人数+B社区的知晓人数=7.1×76%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.1−x)万人,

依题意得:7.1−x≤2x,

解得x≥2.1.

即A社区居民人口至少有2.1万人;

(2)依题意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.1×76%,

设m%=a,方程可化为:1.2(1+a)2+(1+a)(1+2a)=1.7,

化简得:32a2+14a−31=0,

解得a=0.1或a=−(舍),

∴m=10,

答:m的值为10.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.23、销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【分析】根据“单件利润×销售量=总利润”可列一元二次方程求解,结合题意取舍可得【详解】解:设销售单价为x元时,每天的销售利润达到4000元,由题意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因为晨光文具店销售单价不低于成本,且商家尽量让利顾客,所以x2=90不符合题意舍去,故x=70,答:销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客.【点睛】本题主要考查一元二次方程的应用,理解题意确定相等关系,并据此列出方程是解题的关键.24、(1)见解析;(2)AC=1【分析】(1)要证AB切线,连接半径OD,证∠ADO=90°即可,由∠ACB=90°,由OD=OE,DE∥OA,可得∠AOD=∠AOC,证△AOD≌△AOC(SAS)即可,(2)AB是⊙O的切线,∠BDO=90°,由勾股定理求BE,BC=BE+EC可求,利用AD,AC是⊙O的切线长,设AD=AC=x,在Rt△ABC中,AB2=AC2+BC2构造方程求AC即可.【详解】(1)证明:连接OD,∵OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中,∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:∵AB是⊙O的切线,∴∠BDO=90°,∴BD2+OD2=OB2,∴42+32=(3+BE)2,∴BE=2,∴BC=BE+EC=8,∵AD,AC是⊙O的切线,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论