版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条 B.2000条 C.3000条 D.4000条2.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶43.分式方程的根是()A. B. C. D.无实根4.若2是关于方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣3 B.3 C.﹣6 D.65.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9 B.3 C. D.6.关于抛物线y=-3(x+1)2﹣2,下列说法正确的是()A.开口方向向上 B.顶点坐标是(1,2)C.当x<-1时,y随x的增大而增大 D.对称轴是直线x=17.下列事件中是必然发生的事件是()A.投掷一枚质地均匀的骰子,掷得的点数是奇数;B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;C.掷一枚硬币,正面朝上;D.任意画一个三角形,其内角和是180°.8.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上9.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐 B.甲队身高更整齐C.乙队身高更整齐 D.无法确定甲、乙两队身高谁更整齐10.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=011.若与相似且对应中线之比为,则周长之比和面积比分别是()A., B., C., D.,12.已知,则下列结论一定正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.14.如图,在中,,,,则的长为________.15.某扇形的弧长为πcm,面积为3πcm2,则该扇形的半径为_____cm16.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=.17.如图是圆心角为,半径为的扇形,其周长为_____________.18.已知且为锐角,则_____.三、解答题(共78分)19.(8分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,,且.(1)求证:;(2)若,,求的长.20.(8分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m(1)若围成的面积为72m2,球矩形的长与宽;(2)菜园的面积能否为120m2,为什么?21.(8分)(1)计算:.(2)如图,正方形纸板在投影面上的正投影为,其中边与投影面平行,与投影面不平行.若正方形的边长为厘米,,求其投影的面积.22.(10分)(定义)在平面直角坐标系中,对于函数图象的横宽、纵高给出如下定义:当自变量x在范围内时,函数值y满足.那么我们称b-a为这段函数图象的横宽,称d-c为这段函数图象的纵高.纵高与横宽的比值记为k即:.(示例)如图1,当时;函数值y满足,那么该段函数图象的横宽为2-(-1)=1,纵高为4-1=1.则.(应用)(1)当时,函数的图象横宽为,纵高为;(2)已知反比例函数,当点M(1,4)和点N在该函数图象上,且MN段函数图象的纵高为2时,求k的值.(1)已知二次函数的图象与x轴交于A点,B点.①若m=1,是否存在这样的抛物线段,当()时,函数值满足若存在,请求出这段函数图象的k值;若不存在,请说明理由.②如图2,若点P在直线y=x上运动,以点P为圆心,为半径作圆,当AB段函数图象的k=1时,抛物线顶点恰好落在上,请直接写出此时点P的坐标.23.(10分)在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.(1)如图1,求证:弧AC等于弧CD;(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.24.(10分)已知一个圆锥的轴截面△ABC是等边三角形,它的表面积为75πcm²,求这个圆维的底面的半径和母线长.25.(12分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.26.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研其性质——运用函数解决问题”的学习过程.如图,在平面直角坐标系中己经绘制了一条直线.另一函数与的函数关系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直线的解析式;(2)请根据列表中的数据,绘制出函数的近似图像;(3)请根据所学知识并结合上述信息拟合出函数的解折式,并求出与的交点坐标.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意求出鲤鱼与鲢鱼的比值,进而利用池塘中放养了鲤鱼2000条除以鲤鱼与鲢鱼的比值即可估计池塘中原来放养了鲢鱼的条数.【详解】解:由题意可知鲤鱼与鲢鱼的比值为:,所以池塘中原来放养了鲢鱼:(条).故选:C.【点睛】本题考查的是通过样本去估计总体,熟练掌握通过样本去估计总体的方法,只需将样本“成比例地放大”为总体即可.2、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.3、A【分析】观察可得分式方程的最简公分母为,去分母,转化为整式方程求解.【详解】方程去分母得:,解得:,检验:将代入,所以是原方程的根.故选:A.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4、B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为,由一元二次方程根与系数的关系得:,解得,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5、C【分析】根据弧长的公式进行计算即可.【详解】解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.【点睛】此题考查的是根据弧长和圆心角求半径,掌握弧长公式是解决此题的关键.6、C【分析】根据抛物线的解析式得出抛物线的性质,从而判断各选项.【详解】解:∵抛物线y=-3(x+1)2﹣2,
∴顶点坐标是(-1,-2),对称轴是直线x=-1,根据a=-3<0,得出开口向下,当x<-1时,y随x的增大而增大,
∴A、B、D说法错误;
C说法正确.
故选:C.【点睛】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.7、D【分析】直接利用随机事件以及概率的意义分别分析得出答案.【详解】解:A、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,不合题意;B、某种彩票中奖率是1%,则买这种彩票100张有可能会中奖,不合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选D.【点睛】本题主要考查了概率的意义以及随机事件,解决本题的关键是要正确区分各事件的意义.8、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点9、B【解析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键10、C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=61,化简整理得,x2﹣9x+8=1.故选C.11、B【分析】直接根据相似三角形的性质进行解答即可.【详解】解:与相似,且对应中线之比为,其相似比为,与周长之比为,与面积比为,故选:B.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比,相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,相似三角形面积比是相似比的平方是解答此题的关键.12、D【分析】应用比例的基本性质,将各项进行变形,并注意分式的性质y≠0,这个条件.【详解】A.由,则x与y的比例是2:3,只是其中一特殊值,故此项错误;B.由,可化为,且y≠0,故此项错误;C.,化简为,由B项知故此项错误;D.,可化为,故此项正确;故答案选D【点睛】此题主要考查了比例的基本性质,正确运用已知变形是解题关键.二、填空题(每题4分,共24分)13、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得∠COE=90°,根据含30°角的直角三角形的性质可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的长,根据S阴影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【详解】如图,连接CE,∵AC=6,AC、CE为扇形ACB的半径,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圆的直径,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S阴影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案为:【点睛】本题考查扇形面积、含30°角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.14、【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.15、1【分析】根据扇形的面积公式S=,可得出R的值.【详解】解:∵扇形的弧长为πcm,面积为3πcm2,扇形的面积公式S=,可得R=故答案为1.【点睛】本题考查了扇形面积的求法,掌握扇形面积公式是解答本题的关键.16、【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案:∵,,,,…,∴。17、【分析】先根据弧长公式算出弧长,再算出周长.【详解】弧长=,周长==.故答案为:.【点睛】本题考查弧长相关的计算,关键在于记住弧长公式.18、2【分析】根据特殊角的三角函数值,先求出,然后代入计算,即可得到答案.【详解】解:∵,为锐角,∴,∴;∴====;故答案为:2.【点睛】本题考查了特殊角的三角函数值,二次根式的性质,负整数指数幂,零次幂,解题的关键是正确求出,熟练掌握运算法则进行计算.三、解答题(共78分)19、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【详解】(1)证法一:连接.∵为的直径,∴,∴∵,∴∴∴.∵∴∵,∴∴.证法二:连接,.∵为的直径,∴∵∴∴,∴∴∵∴∵∴∴∴∵四边形内接于,∴∴∴∴.(2)解:在中,,,,根据勾股定理得.连接,∵为的直径,∴∴∴∵∴∵∴∴∴四边形是平行四边形.∴.在中,,∴解法一:过点作于点∴在中,,∴在中,∴在中,∴解法二:过点作于点∴∵∴∵∴四边形为矩形∴.∵四边形为平行四边形,∴∴.∵,∴∴即∴【点睛】本题考查圆的综合知识,相似三角形的判定和性质,勾股定理解直角三角形,综合性较强,有一定难度.20、(1)矩形的长为12米,宽为6米;(2)面积不能为120平方米,理由见解析【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【详解】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程求解.21、(1);(2).【分析】(1)代入特殊角的三角函数值,根据实数的混合运算法则计算即可;(2)作BE⊥CC1于点E,利用等腰直角三角形的性质求得的长即可求得BC的正投影的长,即可求得答案.【详解】(1);(2)过点B作BE⊥CC1于点E,在中,,,∴,∵⊥,⊥,且BE⊥CC1,∴四边形为矩形,∴,∵,∴.【点睛】本题主要考查了平行投影的性质,特殊角的三角函数值,等腰直角三角形的性质,本题理解并掌握正投影的特征是解题的关键:正投影是在平行投影中,投影线垂直于投影面产生的投影.22、(1)2,4;(2),2;(1)①存在,k=1;②或或【分析】(1)当时,函数的函数值y满足从而可以得出横宽和纵高;(2)由题中MN段函数图象的纵高为2,进而进行分类讨论N的y值为2以及6的情况,再根据题中对k值定义的公式进行计算即可;(1)①先求出函数的解析式及对称轴及最大值,根据函数值满足确定b的取值范围,并判断此时函数的增减性,确定两个端点的坐标,代入函数解析式求解即可;②先求出A、B的坐标及顶点坐标,根据k=1求出m的值,分两种情况讨论即可.【详解】(1)当时,函数的函数值y满足,从而可以得出横宽为,纵高为故答案为:2,4;(2)将M(1,4)代入,得n=12,纵高为2,令y=2,得x=6;令y=6,x=2,,.(1)①存在,,解析式可化为,当x=2时,y最大值为4,,解得,当时,图像在对称轴左侧,y随x的增大而增大,当x=a时,y=2a;当x=b时,y=1b,将分别代入函数解析式,解得(舍),(舍),,②,,,理由是:A(0,0),B(4,0),顶点K(2,4m),AB段函数图像的k=1,,m=1或-1,二次函数为或,过顶点K和P点分别作x轴、y轴的垂线,交点为H.i)若二次函数为,如图1,设P的坐标为(x,x),则KH=,PH=,在中,,即解得,ii)若二次函数为,如图2,设P的坐标为(x,x),则,在中,,解得x=-1,【点睛】本题考查的是新定义问题,是中考热门题型,解题关键在于结合抛物线的图像性质、直角三角形的勾股定理以及题中对于k值的定义进行求解.23、(1)详见解析;(2)详见解析;(3)4.【分析】(1)如图1,连接BC、CD,先证∠CBA=∠CAD,再证∠CDA=∠CAD,可得出AC=CD,即可推出结论;(2)过点C作CG⊥AD于点G,则∠CGA=90°,证CG垂直平分AD,得出AD=2AG,再证△ACG≌△CAE,推出AG=CE,即可得出AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.【详解】(1)证明:连接BC、CD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CAB+∠CAD=90°,∴∠CBA=∠CAD,又∵∠CDA=∠CBA,∴∠CDA=∠CAD,∴AC=CD,∴;(2)过点C作CG⊥AD于点G,则∠CGA=90°,由(1)知AC=CD,∴CG垂直平分AD,∴AD=2AG,∵AF=CF,∴∠CAD=∠ACE,∵∠CAD+∠CAB=90°,∴∠ACE+∠CAB=90°,∴∠AEC=90°=∠CGA,∵AC=CA,∴△ACG≌△CAE(AAS),∴AG=CE,∴AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=BD=6,OH⊥BD,∴∠OHB=90°=∠CEO,∵OA=OB,∴OH是△ABD的中位线,∴AD=2OH,由(2)知AD=2CE,∴OH=CE,∵OC=OB,∴Rt△OEC≌Rt△BHO(HL),∴OE=BH=6,∴OC=OA=AE+OE=4+6=10,∴在Rt△OEC中,CE2=OC2﹣OE2=82,∴在Rt△AEC中,AC==4.【点睛】本题考查了圆的有关概念及性质、全等三角形的判定与性质、勾股定理等,第证明∠AEC=90°和通过作适当的辅助线构造全等三角形是.解题的关键.24、这个圆锥的底面半径为5cm,母线长为1cm.【分析】根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44805.2-2024数字化电气文件编制第2部分:交互式维修手册
- GB/T 13397-2024合金内氧化法银金属氧化物电触头技术规范
- 股权质押合同范本
- 基于大数据分析的2024年度苹果树苗木种植承包合同
- 二零二四年度采购代理合同3篇
- 足浴店转让协议书范本 版
- 房产交易过程中卖方隐瞒房产瑕疵的违约责任合同20242篇
- 2006年广东省建设工程施工合同(范本)
- 2024年度游戏开发及发行合同
- 《多极化趋势讲》课件
- 人教版(2019)必修 第三册Unit 1 Festivals and Celebrations Reading and Thinking教学设计
- 三方代付工程款协议书范本2024年
- 【道法】爱护身体 课件-2024-2025学年统编版道德与法治七年级上册
- 第二次月考测评卷(5-6单元)(试题)-2024-2025学年六年级数学上册人教版
- 医学课件抗痉挛体位摆放
- 2024年统编版七年级上册道德与法治 第三单元 珍爱我们的生命 第八课 生命可贵 第2课时 敬畏生命 教学课件
- IATF16949组织环境因素识别表
- 《积极心理学(第3版)》 课件 第11章 宽容、篇终 积极心理学的应用与展望
- 职业素质养成(吉林交通职业技术学院)智慧树知到答案2024年吉林交通职业技术学院
- 5.5《方程的意义》(课件)-2024-2025学年人教版数学五年级上册
- 2024年秋人教版七年级上册数学全册教学课件(新教材)
评论
0/150
提交评论