版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularizationisthemostcommonlyusedmethodofofnamedfor.In,themethodisalsoknownasridgeregression.Itisrelatedtothe forproblems.ThestandardapproachtosolveanofgivenasAx=b,isknownasandseekstominimizetheAx一b2where•isthe.However,thematrixmaybeoryieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax一b2+lirxll2forsomesuitablychosenTikhonovmatrix,r.Inmanycases,thismatrixischosenasther=,,givingpreferencetosolutionswithsmallernorms.Inothercases,operators.,aoraweighted)maybeusedtoenforcesmoothnessiftheunderlyingvectorisbelievedtobemostlycontinuous.Thisregularizationimprovestheconditioningoftheproblem,thusenablinganumericalsolution.Anexplicitsolution,denotedby」,isgivenby:ATbATbTheeffectofregularizationmaybevariedviathescaleofmatrix r.ForraI,whena=Othisreducestotheunregularizedleastsquaressolutionprovidedthat(ATA)-1exists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylookartificial,andindeedthematrixrseemsratherarbitrary,theprocesscanbejustifiedfroma.Notethatforanill-posedproblemonemustnecessarilyintroducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethatweknowthatxisarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentisindependentwith^x.Ourdataisalsosubjecttoerrors,andwetaketheerrorsinbtobealso withzeromeanandstandarddeviation °”UndertheseassumptionstheTikhonov-regularizedsolutionisthesolutiongiventhedataandtheaprioridistributionof^,accordingto.TheTikhonovmatrixisthen r=a/forTikhonovfactora=°匕/°xIftheassumptionofisreplacedbyassumptionsofanduncorrelatednessof,andstillassumezeromean,thentheentailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsforxandthedataerror,onecanapplyatransformationofthevariablestoreducetothecaseabove.Equivalently,onecanseekanxtominimize
Ax-b2+x-xp02Qwherewehaveused||x112tostandfortheweightednormPBayesianinterpretationPistheinverse ofb,x0isthexTPx(cf.the).Intheofx,andQistheinversecovariancematrixofxxTPx(cf.the).Intheofx,andQistheThisgeneralizedproblemcanbesolvedexplicitlyusingtheformula0-Ax)00[]RegularizationinHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,andonecanformulateTikhonovregularizationintheoriginalinfinitedimensionalcontext.IntheabovewecaninterpretAasaon,andxandbaselementsithedomainandrangeof^.TheoperatorA*A+rtristhena boundedinvertibleoperator.RelationtosingularvaluedecompositionandWienerfilterWithr=a',thisleastsquaressolutioncanb(the.GiventhesingularvaluedecompositionofAA=UYVtwithsingularvalues°”theTikhonovregularizedsolutioncanbeexpressedas
x=VDUTbwhereDhasdiagonalvaluesDiib= ib2+a2iandiszeroelsewhere.ThisdemonstratestheeffectoftheTikhonovparameterontheoftheregularizedproblem.Forthegeneralizedcaseasimilarrepresentationcanbederivedusinga.Finally,itisrelatedtothe:uTbi=1ii=1biib2wheretheWienerweightsaref=iandQisthe ofA.ib2+a2iDeterminationoftheTikhonovfactorTheoptimalregularizationparameteraisusuallyunknownandofteninpracticalproblemsisdeterminedbyanadhocmethod.ApossibleapproachreliesontheBayesianinterpretationdescribedabove.Otherapproachesincludethe,,,vedthattheoptimalparameter,inthesenseofminimizes:RSSG= RSSG= T2XGtX+;21)1XTwhereRSSisthe andTistheeffectivenumber.UsingthepreviousSVDdecomposition,wecansimplifytheaboveexpression:
andRSS=F另Cb12+andRSS=F另Cb12+工RSS二RSS0a2Cb)G2+a2iii=1iCb)Eg2… ig2+a2i=1 iEa2± g2+a2i=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofanintroduces(whenalluncertaintiesareGaussian)acovariancematrixCMrepresentingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrixCDrepresentingtheuncertaintieson':-:':-:''[.Jandwhenthesetwomatricesarediagonalandisotropic,equationsabove,withHistoryTikhonovregularizationhasbeeninventedindependentlyinmanydifferentcontexts.ItbecamewidelyknownfromitsapplicationtointegralequationsfromtheworkofandD.L.Phillips.SomeauthorsusethetermTikhonov-Phillipsregularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,whotookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa-filter.FollowingHoerl,itisknowninthestatisticalliteratureasridgeregression.[]References(1943)."O6ycTO访TUBOCTuo6paTHbix3agaq[Onthestabilityofinverseproblems]".39(5):195-198.Tychonoff,A.N.(1963)."OpemeHuuHeKoppeKTHonocTaB“eHHbix3agaquMeTogeperyn刃pu3aquu[Solutionofincorrectlyformulatedproblemsandtheregularizationmethod]".DokladyAkademiiNaukSSSR151:501-504..TranslatedinSovietMathematics4:1035-1038.Tychonoff,A.N.;V.Y.Arsenin(1977).SolutionofIll-posedProblems.Washington:Winston&Sons..Hansen,.,1998,Rank-deficientandDiscreteill-posedproblems,SIAMHoerlAE,1962,Applicationofridgeanalysistoregressionproblems,ChemicalEngineeringProgress,58,54-59.FosterM,1961,AnapplicationoftheWiener-Kolmogorovsmoothingtheorytomatrixinversion,J.SIAM,9,387-392PhillipsDL,1962,At
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度养老院食堂与便利店运营管理合同4篇
- 2025年度生态农业大棚使用权转让合同模板4篇
- 2025年度文化产品代理采购合同模板4篇
- 2024版英文技术服务合同范本规范
- 2024进户门销售合同
- 2024诉讼代理委托合同范本
- 2025年度专业论坛会议组织合同范本4篇
- 2025年度数字音乐词曲版权交易合作合同范本4篇
- 2025年度新能源汽车项目代理投标合同样本4篇
- 2024施工简易合同范本(桥梁检测与维修)3篇
- 中国的世界遗产智慧树知到期末考试答案2024年
- 2023年贵州省铜仁市中考数学真题试题含解析
- 世界卫生组织生存质量测量表(WHOQOL-BREF)
- 《叶圣陶先生二三事》第1第2课时示范公开课教学PPT课件【统编人教版七年级语文下册】
- 某送电线路安全健康环境与文明施工监理细则
- GB/T 28885-2012燃气服务导则
- PEP-3心理教育量表-评估报告
- 控制性详细规划编制项目竞争性磋商招标文件评标办法、采购需求和技术参数
- 《增值税及附加税费申报表(小规模纳税人适用)》 及其附列资料-江苏税务
- 中南民族大学中文成绩单
- 危大工程安全管理措施方案
评论
0/150
提交评论