




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TikhonovregularizationFromWikipedia,thefreeencyclopediaTikhonovregularizationisthemostcommonlyusedmethodofofnamedfor.In,themethodisalsoknownasridgeregression.Itisrelatedtothe forproblems.ThestandardapproachtosolveanofgivenasAx=b,isknownasandseekstominimizetheAx一b2where•isthe.However,thematrixmaybeoryieldinganon-uniquesolution.Inordertogivepreferencetoaparticularsolutionwithdesirableproperties,theregularizationtermisincludedinthisminimization:Ax一b2+lirxll2forsomesuitablychosenTikhonovmatrix,r.Inmanycases,thismatrixischosenasther=,,givingpreferencetosolutionswithsmallernorms.Inothercases,operators.,aoraweighted)maybeusedtoenforcesmoothnessiftheunderlyingvectorisbelievedtobemostlycontinuous.Thisregularizationimprovestheconditioningoftheproblem,thusenablinganumericalsolution.Anexplicitsolution,denotedby」,isgivenby:ATbATbTheeffectofregularizationmaybevariedviathescaleofmatrix r.ForraI,whena=Othisreducestotheunregularizedleastsquaressolutionprovidedthat(ATA)-1exists.ContentsBayesianinterpretationAlthoughatfirstthechoiceofthesolutiontothisregularizedproblemmaylookartificial,andindeedthematrixrseemsratherarbitrary,theprocesscanbejustifiedfroma.Notethatforanill-posedproblemonemustnecessarilyintroducesomeadditionalassumptionsinordertogetastablesolution.Statisticallywemightassumethatweknowthatxisarandomvariablewitha.Forsimplicitywetakethemeantobezeroandassumethateachcomponentisindependentwith^x.Ourdataisalsosubjecttoerrors,andwetaketheerrorsinbtobealso withzeromeanandstandarddeviation °”UndertheseassumptionstheTikhonov-regularizedsolutionisthesolutiongiventhedataandtheaprioridistributionof^,accordingto.TheTikhonovmatrixisthen r=a/forTikhonovfactora=°匕/°xIftheassumptionofisreplacedbyassumptionsofanduncorrelatednessof,andstillassumezeromean,thentheentailsthatthesolutionisminimal.GeneralizedTikhonovregularizationForgeneralmultivariatenormaldistributionsforxandthedataerror,onecanapplyatransformationofthevariablestoreducetothecaseabove.Equivalently,onecanseekanxtominimize
Ax-b2+x-xp02Qwherewehaveused||x112tostandfortheweightednormPBayesianinterpretationPistheinverse ofb,x0isthexTPx(cf.the).Intheofx,andQistheinversecovariancematrixofxxTPx(cf.the).Intheofx,andQistheThisgeneralizedproblemcanbesolvedexplicitlyusingtheformula0-Ax)00[]RegularizationinHilbertspaceTypicallydiscretelinearill-conditionedproblemsresultasdiscretizationof,andonecanformulateTikhonovregularizationintheoriginalinfinitedimensionalcontext.IntheabovewecaninterpretAasaon,andxandbaselementsithedomainandrangeof^.TheoperatorA*A+rtristhena boundedinvertibleoperator.RelationtosingularvaluedecompositionandWienerfilterWithr=a',thisleastsquaressolutioncanb(the.GiventhesingularvaluedecompositionofAA=UYVtwithsingularvalues°”theTikhonovregularizedsolutioncanbeexpressedas
x=VDUTbwhereDhasdiagonalvaluesDiib= ib2+a2iandiszeroelsewhere.ThisdemonstratestheeffectoftheTikhonovparameterontheoftheregularizedproblem.Forthegeneralizedcaseasimilarrepresentationcanbederivedusinga.Finally,itisrelatedtothe:uTbi=1ii=1biib2wheretheWienerweightsaref=iandQisthe ofA.ib2+a2iDeterminationoftheTikhonovfactorTheoptimalregularizationparameteraisusuallyunknownandofteninpracticalproblemsisdeterminedbyanadhocmethod.ApossibleapproachreliesontheBayesianinterpretationdescribedabove.Otherapproachesincludethe,,,vedthattheoptimalparameter,inthesenseofminimizes:RSSG= RSSG= T2XGtX+;21)1XTwhereRSSisthe andTistheeffectivenumber.UsingthepreviousSVDdecomposition,wecansimplifytheaboveexpression:
andRSS=F另Cb12+andRSS=F另Cb12+工RSS二RSS0a2Cb)G2+a2iii=1iCb)Eg2… ig2+a2i=1 iEa2± g2+a2i=1 iRelationtoprobabilisticformulationTheprobabilisticformulationofanintroduces(whenalluncertaintiesareGaussian)acovariancematrixCMrepresentingtheaprioriuncertaintiesonthemodelparameters,andacovariancematrixCDrepresentingtheuncertaintieson':-:':-:''[.Jandwhenthesetwomatricesarediagonalandisotropic,equationsabove,withHistoryTikhonovregularizationhasbeeninventedindependentlyinmanydifferentcontexts.ItbecamewidelyknownfromitsapplicationtointegralequationsfromtheworkofandD.L.Phillips.SomeauthorsusethetermTikhonov-Phillipsregularization.ThefinitedimensionalcasewasexpoundedbyA.E.Hoerl,whotookastatisticalapproach,andbyM.Foster,whointerpretedthismethodasa-filter.FollowingHoerl,itisknowninthestatisticalliteratureasridgeregression.[]References(1943)."O6ycTO访TUBOCTuo6paTHbix3agaq[Onthestabilityofinverseproblems]".39(5):195-198.Tychonoff,A.N.(1963)."OpemeHuuHeKoppeKTHonocTaB“eHHbix3agaquMeTogeperyn刃pu3aquu[Solutionofincorrectlyformulatedproblemsandtheregularizationmethod]".DokladyAkademiiNaukSSSR151:501-504..TranslatedinSovietMathematics4:1035-1038.Tychonoff,A.N.;V.Y.Arsenin(1977).SolutionofIll-posedProblems.Washington:Winston&Sons..Hansen,.,1998,Rank-deficientandDiscreteill-posedproblems,SIAMHoerlAE,1962,Applicationofridgeanalysistoregressionproblems,ChemicalEngineeringProgress,58,54-59.FosterM,1961,AnapplicationoftheWiener-Kolmogorovsmoothingtheorytomatrixinversion,J.SIAM,9,387-392PhillipsDL,1962,At
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行企业贷款培训
- 源库单位工作总结
- 脊柱康复治疗
- 陕西格道律师事务所招聘真题2024
- 医院宣教工作总结
- 幼儿产品创新创业
- Pantoic-acid-生命科学试剂-MCE
- Carmagerol-生命科学试剂-MCE
- 2S-2-S-2-2-Bipyrrolidine-生命科学试剂-MCE
- 肾脏内科护理操作项目
- 建筑工程安全管理论文15篇建筑工程安全管理论文
- 基于三菱FX系列PLC的五层电梯控制系统
- 温室韭菜收割机设计学士学位论文
- 女性私密健康
- 思想道德与法治知到章节答案智慧树2023年宁波大学
- 农田土地翻耕合同
- 铁路混凝土工程施工质量验收标准(TB 10424-2018 )培训教材
- 2023年全国医学博士英语统考真题及参考答案
- 浙江新闻奖副刊类参评作品推荐表
- 人才培养方案执行情况及总结
- 煤层气开采地面工程设计方案
评论
0/150
提交评论