版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两个矛盾:一个是曲面与平面之间的矛盾。——经纬网、坐标系、大地控制点——地图投影一个是大与小的矛盾。——比例尺地图是表示地理空间分布有关的信息的良好载体。因此如何描述地球,建立地球模型,表达或确定地球表面的位置,并把这种空间曲面转换为平面的理论和方法是地图学科或技术的共同基础。它为各种地理要素与相应的地面景物之间保持一定对应关系提供一个统一的定位框架,从而使各种地理信息和数据能够具有共同的地理基础。
第二章地球体与地图投影第一节地球体
地球并不是一个正球体,而是一个极半径略短、赤道半径略长,北极略突出、南极略扁平,近于梨形的椭球体。参考椭球面自然表面物理表面数学表面地球体大地水准面测量计算的基础面测量实施的基础面地球的自然表面(微观)地球的自然表面(宏观)大地水准面假设一个当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的水准面,这就是大地水准面。对地球形体的一级逼近。
我国曾经或正在采用的椭球体自然面、物理面、数学面关系图自然表面大地水准面参考椭球面二、地球坐标系统1球面上的地理坐标
天文经纬度、大地经纬度、地心经纬度2平面上的直角坐标
国家坐标系、地方坐标系3高程绝对高程(海拔)、相对高程、高差①天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。天文经度:观测点天顶子午面与格林尼治天顶子午面间的两面角。在地球上定义为本初子午面与观测点之间的两面角。天文纬度:在地球上定义为铅垂线与赤道平面间的夹角。②大地经纬度:表示地面点在参考椭球面上的位置,用大地经度l
、大地纬度
和大地高h
表示。大地经度l
:指参考椭球面上某点的大地子午面与本初子午面间的两面角。东经为正,西经为负。大地纬度:指参考椭球面上某点的垂直线(法线)与赤道平面的夹角。北纬为正,南纬为负。③地心经纬度:即以地球椭球体质量中心为基点,地心经度同大地经度l
,地心纬度是指参考椭球面上某点和椭球中心连线与赤道面之间的夹角y
。在大地测量学中,常以天文经纬度定义地理坐标。在地图学中,以大地经纬度定义地理坐标。在地理学研究及地图学的小比例尺制图中,通常将椭球体当成正球体看,采用地心经纬度。4中国的大地控制网平面控制网
:按统一规范,由精确测定地理坐标的地面点组成,由三角测量或导线测量完成,依精度不同,分为四等。由平面控制网和高程控制网组成,控制点遍布全国各地。平面控制网国家测绘局陕西省泾阳县永乐镇北洪流村为“1980西安坐标系”大地坐标的起算点——大地原点。高程控制网
:按统一规范,由精确测定高程的地面点组成,以水准测量或三角高程测量完成。依精度不同,分为四等。中国高程起算面是黄海平均海水面。1956年在青岛观象山设立了水准原点,其他各控制点的绝对高程均是据此推
算,称为1956年黄海高程系。1987年国家测绘局公布:启用《1985国家高程基准》取代《黄海平均海水面》其比《黄海平均海水面》上升29毫米。
青岛观象山水准原点高程控制网国家测绘局hAB=HB-HA5全球定位系统(GPS)第二节地图投影的概念
地图投影是地图学重要组成部分之一,是构成地图的数学基础,在地图学中的地位是相当重要的。地图投影研究的对象就是如何将地球体表面描写到平面上,也就是研究建立地图投影的理论和方法,地图投影的产生、发展、直到现在,已有一千多年的历史,研究的领域也相当广泛,实际上它已经形成了一门独立的学科。我们学习投影的目的主要是了解和掌握最常用、最基本的投影性质和特点以及他们的变形分布规律,从而能够正确的辨认使用各种常用的投影。一、地图表面和地球球面的矛盾
地图通常是绘在平面介质上的,而地球体表面是曲面,因此制图时首先需要把曲面展成平面,然而,球面是个不可展的曲面,要把球面直接展成平面,必然要发生断裂或褶皱。无论是将球面沿经线切开,或是沿纬线切开,或是在极点结合,或是在赤道结合,他们都是有裂隙的。二、地图投影的概念球面上任一点的位置是用地理坐标(φ、λ)表示的,而平面上点的位置是用直角坐标(纵坐标是x,横坐标是y)表示的,所以要将地球球面上的点转移到平面上,必须采用一定的数学方法来确定地理坐标与平面坐标之间的关系。这种在球面和平面之间建立点与点之间函数关系的数学方法,称为地图投影。投影演示
球面上任意一点的位置决定于其经纬度,故实际投影时是先将一些经纬线的交点展绘在平面上,再将相同经度的点连成经线,相同纬度的点连成纬线,构成经纬线网。有了经纬线网后,就可将球面上的地理事物,按其所在经纬度,用一定的符号画在平面上相应位置处。由此看来,地图投影的实质是将地球椭球面上的经纬网按一定的数学法则转移到平面上。经纬网是绘制地图的“基础”,是地图的主要数学要素。
三、地图投影的方法
1.几何投影(透视投影)假想地球是一个透明体,光源位于球心,然后把球面上的经纬网投影到平面上,就得到一张球面经纬网投影。所不同的是,地图投影面除了平面之外,还有可展成平面的圆柱面和圆锥面;光源除了位于球心之外,还可以在球面、球外,或无穷远处等。
象这样利用光源把地球面上的经纬网投影到平面上的方法叫做几何投影或者几何透视法。这是人们最早用来解决地球球面和地图平面这一对矛盾的一种方法。2.解析法随着科学生产的发展,几何透视法远远不能满足编制各种类型地图的需要,这样推动了地图投影的发展,出现了解析法。
解析法:就是不借助于几何投影光源(而仅仅借助于几何投影的方式),按照某些条件用数学分析法确定球面与平面之间点与点之间一一对应的函数关系。
X=f1(φ、λ)Y=f2(φ、λ)函数的f1f2具体形式,是由给定的投影条件确定的。有了这种对应关系式,就可把球面上的经纬网交点表示到平面上了。四地图投影的变形(一)、变形的概念由于球面是一个不可直接展成平面的曲面,因此无论采用什么投影方法,投影后经纬网的形状与球面上的经纬网形状不完全相似。这表明地图上的经纬网发生了变形。因而根据地理坐标展绘在地图上的各种地面事物也必然发生了变形。为了正确使用地图,必须了解投影后产生得变形,所以投影变形问题是地图投影的重要组成部分。研究各种投影变形的大小和分布规律,具有重大的实际应用价值。(二)、研究变形的方法
研究各种投影的变形规律是通过把投影后的经纬线网与地球仪上经纬线网格比较而实现的。地球仪是地球的真实缩小。通过比较就会发现地球仪上的经纬网形状与投影后经纬网的形状是不相同的。为了研究变形,首先让我们分析一下地球仪上经纬网的特点:
1.地球仪上所有经线圈都是通过两极的大圆;长度相等;所有纬线除赤道是大圆外,其余都是小圆,并且从赤道向两极越来越小,极地成为一点。
2.经线表示南北方向;纬线表示东西方向。
3.经线和纬线是相互垂直的。
4.纬差相等的经线弧长相等;同一条纬线上经差相等的纬线弧长相等,在不同的纬线上,经差相等的纬线弧长不等,而是从赤道向两极逐渐缩小的。
5.同一纬度带内,经差相同的经纬线网格面积相等,不同纬度带内,网格面积不等,同一经度带内,纬度越高,梯形面积越小。由低纬向高纬逐渐缩小。比较(三)、投影变形的相关概念
1.长度比和长度变形设地球球面上有一微小线段ds,投影到平面上为ds’,如图所示。
ds
ds’
平面上微小线段与球面上相应微小线段之比,叫做长度比。用公式表示为:μ=ds’/ds
长度比是一个变量,它不仅随着点的位置不同而变化,还随着方向的变化而变化。长度比是指某点某方向上微小线段之比。通常研究长度比时,不一一研究各个方向的长度比,而只研究一些特定方向的长度比,即研究最大长度比(a)和最小长度比(b),经线长度比(m)和纬线长度比(n)。投影后经纬线成直交者,经纬线长度比就是最大和最小长度比。投影后经纬线不直交,其夹角为θ,则经纬线长度比m、n和最大、最小长度比a、b之间具有如下关系:
m2+n2=a2+b2m·n·sinθ=a·b
用长度比可以说明长度变形。所谓长度变形就是长度比(μ)与1之差,用v表示长度变形则:v=μ-1
由此可知,长度变形有正负之分,长度变形为正,表示投影后长度增加;长度变形为负表示投影后长度缩短;长度变形为零,则长度无变形。2.主方向
由于投影要产生变形,所以球面上两条相互垂直的微小线段投影后一般不一定正交,例如设o是球面上一点,过o作两条垂线ac和bd,投影后为a’c’和b’d’。即地球面上角aob和角boc为直角,投影后分别为钝角a’o’b’和锐角b’o’c’。abcda’oo’b’c’d’那么在变化的过程中,必然有一特殊位置,直角投影后仍保持直交,此二直交直线方向,称之为主方向。abcda’oo’b’c’d’
在主方向上,具有极大和极小长度比。例如我们看过的一些投影,经纬线投影后均保持垂直。所以投影中,经纬线方向就是主方向。经纬线投影后为正交,经纬线方向就是为主方向。但也有一些投影后经纬线斜交,因此,主方向与经纬线方向并不一致。3.变形椭圆在地球球面上取一微小圆,它在平面上的投影除在接触点位置外,一般情况下为椭圆,下面我们用数学方法验证一下。
设o为球面上一点,以它为圆心的微小圆的半径是单位长度(为1),M(x,y)是微小圆周上一点,圆心曲线方程为x2+y2=1o’为o的投影,以主方向作为坐标轴,M‘(x’,y’)是M(x,y)的投影,令主方向长度比为a和b,则:
x’/x=a,y’/y=b则:x=x’/a,y=y’/b(x,y)为圆上一点,将其代如圆的方程,得x2/a2+y2/b2=1
这是一个椭圆方程,这表明该微小圆投影后为长半径为a短半径为b的椭圆,这种椭圆可以用来表示投影后的变形,故叫做变形椭圆。MM在研究投影时,可借助变形椭圆与微小圆比较,来说明变形的性质和数量。椭圆半径与小圆半径之比,可以说明长度变形。很明显的看出长度变形是随方向的变化而变化
4.面积比与面积变形投影平面上的微小面积与球面上相应微小面积之比,称为面积比。以投影面上变形椭圆的面积dF’=abπ,相应球面上微小圆的面积dF=π12为例,以P表示面积比,则:P=dF’/dF=abπ/π12=ab
上式说明面积比等于主方向长度比的乘积。
面积变形有正有负,面积变形为零,表示投影后面积无变形,面积变形为正,表示投影后面积增加;面积变形为负,表示投影后面积缩小。6.角度变形
投影面上任意两方向线所夹角与球面上相应两方向线夹角之差,称为角度变形。过一点可以做许多方向线,每两条方向线均可以组成一个角度,这些角度投影到平面上之后,往往与原来的大小不一样,而且不同的方向线组成的角度产生的变形一般也不一样。
7.等变形线在各种投影图上,都存在着误差或变形。并且各不同点的变形数量常常是不一样的,为了便于观察和了解绘制区域变形的分布。常用等变形线来表示制图区域的变形分布特征。等变形线就是变形值相等的各点的连线,它是根据计算的各种变形的数值(如p,w)绘于经纬线网格内的,如面积等变形线。
等变形线在不同的投影图上,具有不同的形状,在方位投影中,因投影中心点无变形,从投影中心向外变形逐渐增大,等变形线成同心圆状分布。等变形线通常是用点虚线来表示的。等变形线第三节地图投影的分类地图投影的种类很多,由于分类的标志不同,分类的方法也不同。
一、按变形性质分类地球球面投影到平面时,产生的变形有长度、角度和面积三种,根据变形特征可分为:等角投影、等积投影和任意投影三种。1.等角投影(正形投影)角度变形为0,地球面上的微小圆经过投影后仍为相似的微小圆,其形状保持不变,只有长度和面积变形。
等角投影在同一点任何方向的长度比都相等,但在不同地点长度比是不同的。多用于编制航海图、洋流图、风向图等地形图。
由于这类投影可以保持面积没有变形,故有利于在图上进行面积对比。一般用于绘制对面积精度要求较高的自然地图和经济地图。2.等积投影
投影后图形保持面积大小相等,没有面积误差。也就是球面上的不同地点微小圆投影后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《吉林省大众冰雪运动发展策略研究》
- 《科创板IPO审计风险控制问题研究》
- 《纳米油酸诱导肝细胞脂肪变性和凋亡机制研究》
- 《结构功能一体化碳纤维树脂基复合材料RTM制备及性能研究》
- 历史(上海卷01)(参考答案)
- 2024年海口客运从业资格证考试题库下载
- 2024年贵阳客运资格证考多少道题
- 2024年锡林郭勒盟客运从业资格证考试题答案
- 2024年邵阳道路运输从业资格证考试
- 第11讲因数倍数(学生版)
- 菊花课件教学课件
- 肺癌(肺恶性肿瘤)中医临床路径
- 天津市2023-2024学年高一上学期语文期中考试试卷(含答案)
- 证券投资学期末考试卷及答案2套
- 十七个岗位安全操作规程手册
- 12 光的传播 (教学设计)-2023-2024学年五年级上册科学人教鄂教版
- 3.9.1 增强安全意识-2024-2025学年初中道德与法治七年级上册上课课件
- 2024年“泰山杯”山东省网络安全职业技能竞赛理论试题库(含答案)
- 广东省2024年中考历史真题试卷【附真题答案】
- 2024至2030年中国大型铸锻件行业市场深度研究及投资规划建议报告
- 07J901-1实验室建筑设备(一)
评论
0/150
提交评论