理论力学第6章_第1页
理论力学第6章_第2页
理论力学第6章_第3页
理论力学第6章_第4页
理论力学第6章_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

理论力学研究的内容本课程研究的内容:速度远小于光速的宏观物体的机械运动,它以伽利略和牛顿总结的基本定律为基础,属于古典力学的范畴。理论力学所研究的则是这种运动中最一般、最普遍的规律,是各门力学分支的基础。动力学静力学运动学理论力学

在静力学中,研究了以下三个问题:1.刚体的受力分析。2.

力系的简化:用一个简单力系等效地替换一个复杂力系对物体的作用,称为力系的简化。3.

力系的平衡条件及其应用。1.为学习运动学、动力学打基础;2.为学习材料力学打基础;3.为学习结构力学打基础。研究静力学的目的:运动学绪论1.运动学的研究内容和意义内容:运动学从几何的角度来研究物体的运动规律

,而不涉及物体的受力(引起物体运动的物理原因)和惯性。研究力与运动的关系是动力学的任务。

运动学绪论意义:运动学研究所得到的结果,有它独立的重要意义。因为任何机器各部分之间的运动,都要求协调的配合。要达到人们预期的要求,设计时必须进行运动分析,因此:是工程实际的需要;是学习动力学的基础。点(或动点),刚体2.运动学的研究对象及其运动形式运动形式A.直线运动(rectilinearmotion)B.曲线运动(curvilinearmotion)研究对象(抽象化力学模型):(1)

点的运动形式(2)刚体的运动形式A.平动(translation)直线平动曲线平动B.定轴转动(fixed-axisrotation)C.平面运动(planarmotion)6点的运动学6.1描述点的运动的矢量法轨迹:矢端曲线速度方向:矢径矢端曲线切线加速度方向:速度矢端曲线切线直角坐标与矢径坐标之间的关系6.2描述点的运动的直角坐标法运动方程加速度:例6-1椭圆规的曲柄OC可绕定轴O转动,其端点C与规尺AB的中点以铰链相连接,而规尺A,B两端分别在相互垂直的滑槽中运动。求:①M点的运动方程②轨迹③速度④加速度矢量法:轨迹:矢端曲线直角坐标法:运动方程例6-1椭圆规的曲柄OC可绕定轴O转动,其端点C与规尺AB的中点以铰链相连接,而规尺A,B两端分别在相互垂直的滑槽中运动。求:①M点的运动方程②轨迹③速度④加速度解:点M作曲线运动,取坐标系xoy运动方程:消去t,得轨迹求:x=x(t),y=y(t)。已知:求:速度加速度求:加速度正弦机构:例6-2正弦机构如图所示。曲柄OM长为r,绕O轴匀速转动,它与水平线间的夹角为其中θ为t=0的夹角,ω为一常数。已知动杆上A,B两点间距离为b,求点A和B的运动方程及点B的速度和加速度。求:①A、B点运动方程②B点速度、加速度已知:A解:A,B点都作直线运动,取ox轴如图所示。运动方程:AB点的速度和加速度:相位:振幅:B点的振幅为r------直线谐振动几个概念:周期:频率:例:当液压减振器工作时,它的活塞在套筒内作直线往复运动。设活塞的加速度(v为活塞的速度,k为比例常数),初速度为v0,求活塞的运动规律。解:1活塞作直线运动,取坐标轴Ox如图ktevvktvv-=-=00,ln6.3描述点的运动的自然坐标法6.3.2密切面自然轴系:空间曲线的密切面空间曲线的法平面主法线副法线切线自然轴系6.3.1点的运动方程自然坐标轴的几何性质平面曲线的曲率:描述曲线在M点处的弯曲程度MM’ττ1曲率圆:于M点处和曲线有公切线且有相同曲率的圆。其半径为ρ,圆心称为曲率中心。密切面:曲线所在平面即是密切平面。n平面曲线问题:6.3.3点的速度6.3.4点的加速度方向:主法线方向直线运动:aa例6-4列车沿半径为R=800m的圆弧轨道作匀加速运动。如初速度为零,经过2min后,速度到达54km/h。求列车起点和未点的加速度。已知:R=800m=常数,解:1列车作曲线加速运动,取弧坐标如上图②①已知:R=800m=常数,例6-5已知点的运动方程为x=2sin4tm,y=2cos4tm,z=4tm。求:点运动轨迹的曲率半径。分析:例6-5已知点的运动方程为x=2sin4tm,y=2cos4tm,z=4tm。求:点的速度,加速度,切向和法向加速度,和运动轨迹的曲率半径。------匀速螺旋线运动例6-6半径为R的轮子沿直线轨道无滑动地滚动(称为纯滚动),设轮子转角,如图所示。求用直角坐标和弧坐标表示的轮缘上任一点M的运动方程,并求该点的速度、切向加速度及法向加速度。求:M点的运动方程、速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论