版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等关系与不等式了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.一元二次不等式及其解法1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的函数、方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.简单的线性规划1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.均值不等式1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.不等关系与不等式本考点多与不等式性质相结合,涉及函数数列等实际问题,也常与简易逻辑知识相结合,多以选择题形式出现.一元二次不等式及解法1.以考查一元二次不等式的解法为主,在考查时可独立命题,兼顾“三个二次间关系问题”.2.融解法于集合问题,导数的单调性问题之中,考查分类讨论思想、数形结合思想等.简单的线性规划1.多考查线性目标函数的最值问题.兼顾面积、距离、斜率等问题.2.常以选择、填空形式出现,主要是最优解问题.均值不等式重点考查利用基本不等式求最值的方法及应用(不等式恒成立问题).2.注意函数的实际应用问题一、不等式与函数、方程、数列的综合问题1.利用不等式的性质、不等式的证明方法、解不等式等知识可以解决函数中的有关问题,主要体现在:利用不等式求函数的定义域、值域、最值、证明单调性等.2.利用函数、方程、不等式之间的关系,可解决一元二次方程根的分布问题.3.不等式与数列的综合题经常出现在高考压轴题中,主要体现在比较数列中两项的大小等. 已知函数y=lg[(a2-1)x2+(a+1)x+1]的定义域为R,求实数a的取值范围.
m为何值时,方程x2+(m-2)x+(5-m)=0的两个根都大于2?二、不等式的恒成立问题对于恒成立不等式求参数范围问题常见类型及解法有以下几种1.变更主元法:根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元.2.分离参数法:若f(a)<g(x)恒成立,则f(a)<g(x)min.若f(a)>g(x)恒成立,则f(a)>g(x)max.3.数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化. 设f(x)=mx2-mx-6+m.(1)若对于m∈[-2,2],f(x)<0恒成立,求实数x的取值范围;(2)若对于x∈[1,3],f(x)<0恒成立,求实数m的取值范围. 某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元.每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值.【解析】
(1)每次购买原材料后,当天用掉的400公斤原材料不需要保管费用,第二天用掉的400公斤原材料需保管1天,第三天用掉的400公斤原材料需保管2天,第四天用掉的400公斤原材料需保管3天,…,第x天(也就是下次购买原材料的前一天)用掉最后的400公斤原材料需保管x-1天.∴每次购买的原材料在x天内总的保管费用:y1=400×0.03[1+2+3+…+(x-1)]=6x2-6x(元).四、二元线性规划问题求目标函数在约束条件下的最优解,一般步骤为:一是寻求约束条件和目标函数,二是作出可行域,三是在可行域内求目标函数的最优解.特别注意目标函数z=ax+by+c在直线ax+by=0平移过程中的变化规律和图中直线斜率的关系,简单的线性规划应用题在现实生活中的广泛的应用也是高考的热点. 已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,才能使总运费最少?设直线x+y=280与y=260的交点为M,则M(20,260).把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小.∵点M的坐标为(20,260),∴甲煤矿生产的煤向东车站运20万吨,向西车站运180万吨,乙煤矿生产的煤全部运往东车站时,总运费最少.五、解含参数的不等式解含参数的不等式,由于解答过程中的不确定因素,常需进行分类讨论,如一元二次不等式的二次项系数,含参数时分系数等于0、不等于0两类;不等式两边同乘以(或除以)一个数时,要讨论这个数的符号;解一元二次不等式对应方程根的情况不定或有实根但大小不定时要讨论. 解不等式ax2+2x+1>0,a∈R. 当方程x2+ax+2=0至少有一个实数根小于-1时,求实数a的取值范围.【解析】
设f(x)=x2+ax+2,其图象是抛物线.①当原方程有一个实根小于-1,另一个实根大于-1时,如图所示,须且只需f(-1)=(-1)2+(-1)a+2<0,二、分类讨论思想 解不等式ax2-(a+1)x+1<0三、函数与方程思想 设不等式x2-2ax+a+2≤0的解集为M,如果M⊆[1,4],求实数a的取值范围.∴方程x2-2ax+a+2=0的两根x1,x2(x1<x2)均在区间[1,4]内,因此知函数f(x)=x2-2ax+a+2与x轴的两交点均在区间[1,4]之内,如图所示,则有四、转化与化归思想 已知二次函数f(x)=ax2+bx+1(a,b∈R,a>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国建筑国际集团校园招聘245人高频重点提升(共500题)附带答案详解
- 2025中国人寿保险股份限公司南漳县支公司13人(湖北)高频重点提升(共500题)附带答案详解
- 2025下半年重庆酉阳自治县教育事业单位招聘125人开考历年高频重点提升(共500题)附带答案详解
- 2025下半年浙江省舟山市生态环境局下属事业单位招聘2人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川省阿坝州事业单位招聘191人高频重点提升(共500题)附带答案详解
- 2025下半年四川甘孜州事业单位招聘619人历年高频重点提升(共500题)附带答案详解
- 2025上海市行政法制研究所研究人员公开招聘历年高频重点提升(共500题)附带答案详解
- 2025上半年江苏省南通通州事业单位招聘78人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川省资阳安岳县人力资源和社会保障局考试招聘89人高频重点提升(共500题)附带答案详解
- 2025上半年四川凉山西昌市招聘教师212人高频重点提升(共500题)附带答案详解
- GB∕T 41550-2022 畜禽屠宰用脱毛剂使用规范
- 轻型触探仪地基承载力参数对照表
- 综合管理部负责人(部长)岗位职责
- 检验科15项质量控制指标(检验科质控小组活动记录)
- GB∕T 2518-2019 连续热镀锌和锌合金镀层钢板及钢带
- 海南省商品住宅专项维修资金管理办法
- 美国文学各个时期作家作品集合
- 空运委托书范本
- 工业氯化苄企业标准连云港泰乐
- 机翼翼肋实例零件库设计
- GB∕T 10596-2021 埋刮板输送机
评论
0/150
提交评论