下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市滕州市第七中学2021年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若复数是纯虚数,则实数a的值为 ()A.1 B.2 C.1或2 D.-1参考答案:B略2.函数,则(
).A.
B.
C.
D.参考答案:B略3.对于下列命题:①若是直线的倾斜角,则;
②若直线倾斜角为,则它斜率;
③任一直线都有倾斜角,但不一定有斜率;
④任一直线都有斜率,但不一定有倾斜角。其中正确命题的个数为(
)
A、1
B、2
C、3
D、4参考答案:B4.如表是一位母亲给儿子作的成长记录:年龄/周岁3456789身高/cm94.8104.2108.7117.8124.3130.8139.1根据以上样本数据,她建立了身高y(cm)与年龄x(周岁)的线性回归方程为=7.19x+73.93,给出下列结论:①y与x具有正的线性相关关系;②回归直线过样本的中心点(6,117.1);③儿子10岁时的身高是145.83cm;④儿子年龄增加1周岁,身高约增加7.19cm.其中,正确结论的个数是()A.1 B.2 C.3 D.4参考答案:B【考点】命题的真假判断与应用.【专题】概率与统计.【分析】本题考察统计中的线性回归分析,在根据题目给出的回归方程条件下做出分析,然后逐条判断正误.【解答】解;线性回归方程为=7.19x+73.93,①7.19>0,即y随x的增大而增大,y与x具有正的线性相关关系,①正确;②回归直线过样本的中心点为(6,117.1),②错误;③当x=10时,=145.83,此为估计值,所以儿子10岁时的身高的估计值是145.83cm而不一定是实际值,③错误;④回归方程的斜率为7.19,则儿子年龄增加1周岁,身高约增加7.19cm,④正确,故应选:B【点评】本题考察回归分析的基本概念,属于基础题,容易忽略估计值和实际值的区别.5.两圆C1:x2+y2﹣4x+3=0和C2:的位置关系是()A.相离 B.相交 C.内切 D.外切参考答案:D【考点】圆与圆的位置关系及其判定.【专题】计算题;规律型;直线与圆.【分析】根据两圆的圆心距与两个圆的半径和的关系,可得两圆的位置关系.【解答】解:由题意可得,圆C2:x2+y2﹣4x+3=0可化为(x﹣2)2+y2=1,C2:的x2+(y+2)2=9两圆的圆心距C1C2==4=1+3,∴两圆相外切.故选:D.【点评】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.6.已知抛物线方程为,则该抛物线的准线方程为(
)A.
B.
C.
D.参考答案:D略7.已知函数为奇函数,则m的值为(
)A.
B. C.-2
D.2参考答案:A8.已知,则二项式的二项式系数之和与各项系数之和的积为()A.0 B.-1 C.1 D.以上都不对参考答案:B【分析】由定积分的运算性质和定积分的几何意义,求得,进而得二项式系数之和,再令,可得展开式的各项之和为,即可求解,得到答案。【详解】由定积分的运算性质,可得,又由表示圆的上半圆的面积,即,所以,又由,所以,所以二项式为的二项式系数之和为,令,可得展开式的各项之和为,所以二项式系数之和与各项系数之和的积为,故选B。【点睛】本题主要考查了定积分性质及运算,以及二项式系数之和与项的系数之和的求解及应用,其中呢解答中熟练应用定积分的性质求得的值,以及合理求解二项式系数与项的系数之和是解答的关键,着重考查了推理与运算能力,属于中档试题。9.设是奇函数,则()A.,且f(x)为增函数 B.a=﹣1,且f(x)为增函数C.,且f(x)为减函数 D.a=﹣1,且f(x)为减函数参考答案:A【考点】3L:函数奇偶性的性质;3E:函数单调性的判断与证明.【分析】由于f(x)为R上的奇函数,故f(0)=0,从而可求得a,再结合其单调性即可得到答案.【解答】解:∵f(x)=a﹣是R上的奇函数,∴f(0)=a﹣=0,∴a=;又y=2x+1为R上的增函数,∴y=为R上的减函数,y=﹣为R上的增函数,∴f(x)=﹣为R上的增函数.故选A.10.下列函数中,最小值是2的是(
)
A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.“p且q”为真是“p或q”为真的
条件.(填“充分不必要条件”,“必要不充分条件”,“充要条件”,“既不充分也必要条件”)参考答案:充分不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】应用题.【分析】由“p且q”为真可知命题P,q都为真命题;由“p或q”为真可知命题p,q至少一个为真命题,从而可判断【解答】解:由“p且q”为真可知命题P,q都为真命题由“p或q”为真可知命题p,q至少一个为真命题∴当“p且q”为真时“p或q”一定为真,但“p或q”为真是“p且q”不一定为真故“p且q”为真是“p或q”为真的充分不必要条件故答案为充分不必要条件【点评】本题主要考查了充分条件与必要条件的判断,解题的关键是由复合命题的真假判断命题p,q的真假12.动点P到两个定点A(-3,0)、B(3,0)的距离比为2:1,则P点的轨迹围成的图形的面积是__________。参考答案:16
13.已知i是虚数单位,若复数z满足,则z的共轭复数_________.参考答案:【分析】化简为,然后,直接求的共轭复数即可【详解】,得,则的共轭复数【点睛】本题考查复数的运算,属于基础题14.一个正方体的一条体对角线的两端点坐标分别为P(-1,2,-1),Q(3,-2,3),则该正方体的棱长为_____参考答案:略15.椭圆的焦距是
,焦点坐标为
参考答案:,和
16.设集合U=A=B=,则等于
参考答案:{1,4,5}17.某校今年计划招聘女教师x人,男教师y人,若x、y满足,则该学校今年计划招聘教师最多
人.参考答案:10【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,则目标函数为z=x+y,利用线性规划的知识进行求解即可.【解答】解:设z=x+y,作出不等式组对应的平面区域如图:由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.但此时z最大值取不到,由图象当直线经过整点E(5,5)时,z=x+y取得最大值,代入目标函数z=x+y得z=5+5=10.即目标函数z=x+y的最大值为10.故答案为:10.【点评】本题主要考查线性规划的应用问题,根据图象确定最优解,要根据整点问题进行调整,有一定的难度.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)已知椭圆的方程为.(1)求椭圆的焦点坐标及离心率;(2)求以椭圆的焦点为顶点、顶点为焦点的双曲线方程.参考答案:(1)焦点坐标;(2)19.(本题满分14分)如图已知在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是AA1、BB1、AB、B1C1的中点.(1)求证:面PCC1⊥面MNQ;(2)求证:PC1∥面MNQ。[来参考答案:证明:(1)∵AC=BC,P是AB中点,∴AB⊥PC∵AA1⊥面ABC,CC1//AA1
∴CC1⊥面ABC
……1分而AB在平面ABC内,∴CC1⊥AB
……2分∵CC1PC=C
∴AB⊥面PCC1
……3分又MN分别是AA1,BB1中点,四边形AA1B1B是平行四边形,MN//AB,
∴MN⊥面/PCC1
……4分MN在平面MNQ内,
……5分∴面PCC1⊥面MNQ
……6分(2)连PB1与MN相交于K,连KQ
……8分∵MN//PB,N为BB的中点,∴K为PB1的中点又∵Q是C1B1的中点
∴PC1//KQ
……10分而KQ
平面MNQ,PC1
平面MNQ∴PC1//面MNQ
……12分
略20.(本小题满分12分)求经过点,和直线相切,且圆心在直线上的圆方程.参考答案:[解析]:由题意知:过A(2,-1)且与直线:x+y=1垂直的直线方程为:y=x-3,∵圆心在直线:y=-2x上,
∴由即,且半径,∴所求圆的方程为:.略21.(本小题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:序号1234567891011121314151617181920数学成绩9575809492656784987167936478779057837283物理成绩9063728791715882938177824885699161847886若单科成绩85分以上(含85分),则该科成绩为优秀.(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀数学成绩不优秀
合
计物理成绩优秀
物理成绩不优秀
合
计
20(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有
关系?参考数据:①
假设有两个分类变量和,它们的值域分别为和,其样本频数列联表(称
合计合计
为列联表)为:
则随机变量,其中为样本容量;②独立检验随机变量的临界值参考表:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828参考答案:(1)解:2×2列联表为(单位:人):
数学成绩优秀数学成绩不优秀合
计物理成绩优秀
5
2
7物理成绩不优秀
1
12
13
合
计
6
14
20
….……………….……………….4分(2)解:提出假设:学生数学成绩与物理成绩之间没有关系.….……………….……………….6分
根据列联表可以求得.….……………….……………….9分
当成立时,.….……………….……………….11分
所以我们有的把握认为:学生的数学成绩与物理成绩之间有关系….……………….…………….12分略22.已知集合A={x|﹣a﹣2<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版别墅区智能家居系统安装与维护合同2篇
- 专业自卸车租赁服务协议(2024版)版B版
- 二零二五年度钢材现货及期货交易代理合同3篇
- 二零二五年度地砖供货与旅游度假区合同3篇
- 2024版拓展训练合同范本大全
- 潍坊医学院《阿拉伯文学选读》2023-2024学年第一学期期末试卷
- 天津工业大学《土木水利(建筑与土木工程)领域论文写作指导》2023-2024学年第一学期期末试卷
- 泰山护理职业学院《音乐会实践(2)》2023-2024学年第一学期期末试卷
- 2025年度旅游线路开发居间服务合同范本6篇
- 2025年度船舶动力系统研发与建造合同3篇
- 小儿甲型流感护理查房
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 寒假作业(试题)2024-2025学年五年级上册数学 人教版(十二)
- 银行信息安全保密培训
- 市政道路工程交通疏解施工方案
- 2024年部编版初中七年级上册历史:部分练习题含答案
- 拆迁评估机构选定方案
- 床旁超声监测胃残余量
- 上海市松江区市级名校2025届数学高一上期末达标检测试题含解析
- 综合实践活动教案三上
- 《新能源汽车电气设备构造与维修》项目三 新能源汽车照明与信号系统检修
评论
0/150
提交评论