下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市市第一中学2022-2023学年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若命题“”为假,且“”为假,则(
)A.或为假
B.真 C.假
D.不能判断的真假参考答案:C略2.抛物线的焦点到其准线的距离为
(
)A.
B.
C.
D.参考答案:D3.下列程序执行后输出的结果是()A.
–1
B.
0
C.
1
D.2参考答案:B4.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是(
)A. B. C. D.参考答案:D5.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A. B. C. D.参考答案:A【考点】简单空间图形的三视图.
【专题】计算题;作图题.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.6.若函数在区间内是单调递减函数,则实数的取值范围是(
)A.
B.
C.
D.参考答案:A略7.下列所给出的函数中,是幂函数的是
(
)
参考答案:B略8.在复平面上,点对应的复数是,线段的中点对应的复数是,则点对应的复数是(
)A.
B.
C.
D.参考答案:A9.已知函数,则方程在区间上的根有(
)A.3个
B.2个
C.1个
D.0个参考答案:D10.当输入x=﹣4时,如图的程序运行的结果是()A.7 B.8 C.9 D.15参考答案:D【分析】由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,将x=﹣4,代入可得答案.【解答】解:由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,∵x=﹣4<3,故y=(﹣4)2﹣1=15,故选:D二、填空题:本大题共7小题,每小题4分,共28分11.i是虚数单位,则复数的虚部为______.参考答案:-1【分析】分子分母同时乘以,进行分母实数化。【详解】,其虚部为-1【点睛】分母实数化是分子分母同时乘以分母的共轭复数,是一道基础题。12.直线与圆相交于两点,若,则的取值范围是
;参考答案:13.当a<0时,关于x的不等式(x-5a)(x+a)>0的解集是________.参考答案:{x|x<5a或x>-a}略14.已知函数是偶函数,是奇函数,正数数列满足,,求数列的通项公式为________________.参考答案:15.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,,7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是
参考答案:0060,0220
16.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是.其中正确结论的序号是(写出所有正确结论的序号)参考答案:①③略17.曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是
.参考答案:
【考点】导数的运算;IT:点到直线的距离公式.【分析】直线y=2x+3在曲线y=ln(2x+1)上方,把直线平行下移到与曲线相切,切点到直线2x﹣y+3=0的距离即为所求的最短距离.由直线2x﹣y+3=0的斜率,令曲线方程的导函数等于已知直线的斜率即可求出切点的横坐标,把求出的横坐标代入曲线程即可求出切点的纵坐标,然后利用点到直线的距离公式求出切点到已知直线的距离即可.【解答】解:因为直线2x﹣y+3=0的斜率为2,所以令y′==2,解得:x=1,把x=1代入曲线方程得:y=0,即曲线上过(1,0)的切线斜率为2,则(1,0)到直线2x﹣y+3=0的距离d==,即曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是.故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知平面上三个向量的模均为1,它们相互之间的夹角均为120°.(1)求证:;(2)若|k|>1(k∈R),求k的取值范围.参考答案:【考点】数量积判断两个平面向量的垂直关系;向量的模.【分析】(1)利用向量的分配律及向量的数量积公式求出;利用向量的数量积为0向量垂直得证.(2)利用向量模的平方等于向量的平方及向量的数量积公式将已知等式平方得到关于k的不等式求出k的范围.【解答】解:(1)证明∵==||?||?cos120°﹣||?||?cos120°=0,∴.(2)解|k|>1?>1,即>1.∵||=||=||=1,且相互之间的夹角均为120°,∴=1,=﹣,∴k2+1﹣2k>1,即k2﹣2k>0,∴k>2或k<0.19.如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.(Ⅰ)当点为的中点时,试判断直线与平面的关系,并说明理由;(Ⅱ)求证:.参考答案:解:(Ⅰ)当点为CD的中点时,平面PAC.
理由如下:点分别为,的中点,.
,,平面PAC.
(Ⅱ),,
.
又是矩形,,
,.
,.
,点是的中点,
.
又,
.
.
略20.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)若AC1⊥平面A1BD,求证B1C1⊥平面ABB1A1;(Ⅲ)在(II)的条件下,设AB=1,求三棱B﹣A1C1D的体积.参考答案:考点:直线与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(I)连结AB1交A1B于E,连ED.由正方形的性质及三角形中位线定理,结合线面平行的判定定理可得B1C∥平面A1BD;(Ⅱ)由AC1⊥平面ABD,结合正方形的性质可证得A1B⊥平面AB1C1,进而A1B⊥B1C1,再由线面垂直的判定定理可得B1C1⊥平面ABB1A1.(III)由等腰三角形三线合一可得BD⊥AC.再由面面垂直的性质定理得到BD⊥平面DC1A1.即BD就是三棱锥B﹣A1C1D的高.代入棱锥的体积公式,可得答案.解答:证明:(I)连结AB1交A1B于E,连ED.∵ABC﹣A1B1C1是三棱柱中,且AB=BB1,∴侧面ABB1A是一正方形.∴E是AB1的中点,又已知D为AC的中点.∴在△AB1C中,ED是中位线.∴B1C∥ED.又∵B1C?平面A1BD,ED?平面A1BD∴B1C∥平面A1BD.…(4分)(II)∵AC1⊥平面ABD,A1B?平面ABD,∴AC1⊥A1B,又∵侧面ABB1A是一正方形,∴A1B⊥AB1.又∵AC1∩AB1=A,AC1,AB1?平面AB1C1.∴A1B⊥平面AB1C1.又∵B1C1?平面AB1C1.∴A1B⊥B1C1.又∵ABC﹣A1B1C1是直三棱柱,∴BB1⊥B1C1.又∵A1B∩BB1=B,A1B,BB1?平面ABB1A1.∴B1C1⊥平面ABB1A1.…(8分)解:(III)∵AB=BC,D为AC的中点,∴BD⊥AC.∴BD⊥平面DC1A1.∴BD就是三棱锥B﹣A1C1D的高.由(II)知B1C1⊥平面ABB1A1,∴BC⊥平面ABB1A1.∴BC⊥AB.∴△ABC是直角等腰三角形.又∵AB=BC=1∴BD=∴AC=A1C1=∴三棱锥B﹣A1C1D的体积V=?BD?=?A1C1?AA1=K=…(12分)点评:本题考查的知识点是直线与平面垂直的判定,直线与平面平行的判定,棱锥的体积,熟练掌握空间线面平行,线面垂直的判定定理是解答的关键.21.如图,港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?参考答案:在△BDC中,由余弦定理知cos∠CDB==-,sin∠CDB=.∴sin∠ACD=sin=sin∠CDBcos-cos∠CDBsin=,∴轮船距港口A还有15海里.22.已知实数c>0,设命题p:函数y=(2c﹣1)x在R上单调递减;命题q:不等式x+|x﹣2c|>1的解集为R,如果p∨q为真,p∧q为假,求c的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高校科研成果转化合同管理规定2篇
- 2025年度社区垃圾分类与回收处理服务合同范本2篇
- 2025年度智能交通系统技术改造合同2篇
- 二零二五年度房地产维修基金补充协议合同模板3篇
- 2025年度生鲜乳产业链上下游协同发展协议3篇
- 蚂蚁运粮项目课程设计
- 2025年度汽车租赁合同纠纷调解协议书2篇
- 二零二五年度干挂石材研发与生产合作协议2篇
- 海南卫生健康职业学院《植物学实验》2023-2024学年第一学期期末试卷
- 2025年度男方债务处理离婚协议示范书3篇
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之11:“5领导作用-5.5岗位、职责和权限”(雷泽佳编制-2025B0)
- 2024年-江西省安全员C证考试题库
- 物业保安培训工作计划
- 开题报告课件(最终)
- 投标部述职报告
- 中国高铁技术的发展与展望
- 项目微信公众号运营方案
- 2024年度5G网络覆盖建设项目承包合同3篇
- 十四五规划在医疗行业
- 【MOOC】计算机组成原理-电子科技大学 中国大学慕课MOOC答案
- 广东省潮州市2023-2024学年高二上学期期末考试 数学 含解析
评论
0/150
提交评论