版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津塘沽区第十四中学2022年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50m,,后,就可以计算出A,B两点的距离为(
)A.
B.
C.
D.参考答案:A2.已知函数,其导函数的部分图像如图所示,则函数的解析式为
A.
B.
C.
D.参考答案:B略3.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A﹣BCD的外接球的体积为()A.π B.π C.π D.π参考答案:C【考点】球的体积和表面积.【分析】矩形ABCD中,由AB=4,BC=3,DB=AC=5,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O因此球半径R=2.5,由此能求出四面体ABCD的外接球的体积.【解答】解:矩形ABCD中,∵AB=4,BC=3,∴DB=AC=5,设DB交AC与O,则O是△ABC和△DAC的外心,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O因此球半径R=2.5,四面体ABCD的外接球的体积:V=×π×(2.5)3=.故选:C.4.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60° B.120° C.150° D.60°或120°参考答案:A【考点】同角三角函数基本关系的运用.【专题】三角函数的求值.【分析】利用正弦定理得到=,代入已知等式,利用同角三角函数间的基本关系化简,再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosB的值,即可确定出B的度数.【解答】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.5.设分别是椭圆的左、右焦点,过的直线与椭圆交于两点,且,,则椭圆的离心率为()
(A)
(B)
(C)
(D)参考答案:D略6.若集合=
(
)
A.
B.
C.
D.参考答案:答案:A7.函数的图象大致是(
)参考答案:D令,则,为上的偶函数,故B错误.当,,,若时,,故在上为减函数;若时,,故在上为增函数;故选D.
8.当时,则下列大小关系正确的是
(
) A.
B.
C.D.参考答案:C略9.已知集合,则实数的取值范围是A、
B、
C、
D、参考答案:B略10.函数的图象大致为(
)
参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知直线的参数方程为:,圆C的极坐标方程为,那么,直线l与圆C的位置关系是__________.参考答案:相交解析:直线l的直角坐标方程为,圆C的直角坐标方程为,圆心到直线的距离,直线l与圆C的位置关系是相交.12.对于集合N={1,2,3,…,n}的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5.当集合N中的n=2时,集合N={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S2=1+2+(2-1)=4,请你尝试对n=3、n=4的情况,计算它的“交替和”的总和S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn=
参考答案:13.若函数有六个不同的单调区间,则实数的取值范围是
参考答案:(2,3)略14.(4分)(2015?上海模拟)已知函数f(x)=2,若g(x)=f(3x)在上是增函数,则ω的最大值.参考答案:【考点】:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】:三角函数的图像与性质.【分析】:g(x)=f(3x)=2sin(3ωx+),利用正弦函数的单调性可求ω的最大值;并求此时f(x)在[0,π]上的取值范围.解:∵g(x)=f(3x)=2sin(3ωx+)在(0,)上是增函数,∴由2kπ﹣≤3ωx+≤2kπ+(k∈Z),ω>0得:≤x≤(k∈Z),∵f(3x)=2sin(3ωx+)在(0,)上是增函数,∴≤,∴0<ω≤.∴ωmax=.故答案为:.【点评】:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查正弦函数的周期与单调性,考查三角综合运算能力,属于中档题.15.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3﹣3x+1的图象关于点(0,1)成中心对称;②对?x,y∈R,若x+y≠0,则x≠1,或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为钝角三角形,则sinA<cosB.参考答案:①②③考点:命题的真假判断与应用.专题:函数的性质及应用.分析:本题考查的知识点是判断命题真假,比较综合的考查了函数的性质,我们可以根据对称性等函数的性质对四个结论逐一进行判断,可以得到正确的结论.解答:解:①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;②对?x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;④若△ABC为钝角三角形,若A为锐角,B为钝角,则sinA>cosB,④错误.故答案为:①②③点评:③的判断中使用了数形结合的思想,是数学中的常见思想,要加深体会.16.设为虚数单位,则复数的虚部为
,模为
.参考答案:-2,
17.已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的最大值是___.参考答案:25【分析】设椭圆的左焦点为F'(﹣2,0),由椭圆的定义可得2=|PF|+|PF'|,即|PF'|=2﹣|PF|,可得|PA|﹣|PF'|=8﹣2,运用三点共线取得最值,解不等式可得m的范围,再由点在椭圆内部,可得所求范围.【详解】椭圆C:的右焦点F(2,0),左焦点为F'(﹣2,0),由椭圆的定义可得2=|PF|+|PF'|,即|PF'|=2﹣|PF|,可得|PA|﹣|PF'|=8﹣2,由||PA|﹣|PF'||≤|AF'|=2,可得﹣2≤8﹣2≤2,解得,所以,①又A在椭圆内,所以,所以8m-16<m(m-4),解得或,与①取交集得故答案为25.【点睛】本题考查椭圆的定义和性质的运用,考查转化思想和运算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,曲线的参数方程为以为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的普通方程及直线的直角坐标方程;(2)过点且平行于直线的直线与曲线交于两点,若,证明点在一个椭圆上.参考答案:(1),(2)设过点与平行于直线的直线的参数方程为(为参数)由,得:∴,得即点落在椭圆上.19.在△ABC中,角A、B、C所对的边分别是a、b、c,若a=2,b=2,cosA=且c<b.(1)求c的值;(2)求△ABC的面积及AB边上的高.参考答案:【考点】解三角形.【专题】计算题;数形结合;数形结合法;解三角形.【分析】(1)由题意和余弦定理可得c的方程,解方程由c<b可得;(2)S=bcsinA,代值计算可得,设AB边上的高为h,由等面积可得h的方程,解方程可得.【解答】解:(1)由题意和余弦定理可得22=(2)2+c2﹣2?2c?,解得c=2或c=4,由c<b可得c=2;(2)△ABC的面积S=bcsinA==,设AB边上的高为h,由等面积可得×2h=,解得h=.【点评】本题考查解三角形,涉及余弦定理和三角形的面积公式,属基础题.20.
已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)解关于的不等式.参考答案:(Ⅰ)因为是奇函数,所以,解得b=1,
又由,解得a=2.
(Ⅱ)由(Ⅰ)知
由上式易知在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数在R上是减函数).
又因是奇函数,从而不等式等价于
因是减函数,由上式推得
,
即解不等式可得21.已知函数的最小正周期为π.(1)求ω的值;
(2)讨论f(x)在区间上的单调性.参考答案:【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)将函数进行化简,再利用周期公式求ω的值.(2)当x在区间上时,求出内层函数的取值范围,结合三角函数的图象和性质,求单调性.【解答】解:函数.化简得Lf(x)=4cosωx(cosωx﹣sinωx)=2cos2ωx﹣sin2ωx=1+cos2ωx﹣sin2ωx=2cos(2ωx)+1.(1)因为函数的最小正周期
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共享服务合同的签订流程详解
- 工业耗材购买合同
- 镜头采购与技术版权合同
- 标准化的采购合同模板
- 石油产品购销合同
- 托管转让合同优势
- 保洁服务合同签订指南
- 设计专利权试用版合同
- 承诺的坚定个人保证书
- 招标文件的严格审查流程
- 2023年7月国开(中央电大)专科《成本会计》期末考试试题及答案
- 教师教学能力比赛-教学实施报告(计算机-网络系统集成)
- 网络工程职业生涯展示
- 难治性高血压诊治护理课件
- 2024年南京科技职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 车载红外热像仪行业市场前景分析2024-2030年
- 人工智能的应用
- 公务员生涯职业规划书
- 2024年度年七年级劳动技能课全册教案
- 《消费者八大心理》课件
- 《卓越绩效评价准则》课件
评论
0/150
提交评论