版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宜宾市熊家庙中学2021-2022学年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设a、b为正实数,P=aabb,Q=abba,则P、Q的大小关系是
(
)A.P≥Q
B.P≤Q
C.P=Q
D.不能确定参考答案:A略2.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A. B. C. D.参考答案:C【考点】几何概型;一元二次不等式的解法.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0?x2﹣x﹣2≤0?﹣1≤x≤2,∴f(x0)≤0?﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C3.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为:A.
B.
C.
D.参考答案:A4.设,,,则A.
B.
C.
D.参考答案:A5.如果执行下边的程序框图,输入x=-12,那么其输出的结果是()A.9
B.3C.
D.参考答案:C6.已知集合和集合,则等于(
)A.(0,1)
B.[0,1]C.[0,+∞)
D.[0,1)参考答案:B7.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16 B.18 C.24 D.32参考答案:C【考点】D9:排列、组合及简单计数问题.【分析】本题是一个分类计数问题,首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,当左边两辆,最右边一辆时,当左边一辆,最右边两辆时,当最右边三辆时,每一种情况都有车之间的一个排列A33,得到结果.【解答】解:由题意知本题是一个分类计数问题,首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列A33,当左边两辆,最右边一辆时,有车之间的一个排列A33,当左边一辆,最右边两辆时,有车之间的一个排列A33,当最右边三辆时,有车之间的一个排列A33,总上可知共有不同的排列法4×A33=24种结果,故选C.8.定积分(x+sinx)dx的值为()A.﹣cos1
B.+1 C.π D.参考答案:A【考点】定积分.【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限后作差得答案.【解答】解:(x+sinx)dx=(x2﹣cosx)|=(﹣cos1)﹣(0﹣1)=﹣cos1,故选:A9.下面四个判断中,正确的是()参考答案:CA.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1+k;10.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n
②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n
④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④参考答案:A【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【解答】解:对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n∥l,又因为m⊥α,l?α,所以m⊥l,结合n∥l得m⊥n.由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,而平面α是正方体下底面所在的平面,则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A二、填空题:本大题共7小题,每小题4分,共28分11.OX,OY,OZ是空间交于同一点O的互相垂直的三条直线,点到这三条直线的距离分别为3,4,5,则长为_______.参考答案:512.已知函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=3,则f(-1)=
.参考答案:略13.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(﹣1,1)内,则实数a的取值范围是.参考答案:(,2)【考点】利用导数研究函数的极值.【分析】求导函数,则问题转化为方程3x2+2ax+1=0的根都在区间(﹣1,1)内,构造函数g(x)=3x2+2ax+1,即可求得实数a的取值范围.【解答】解:函数f(x)=x3+ax2+x+2(a>0)求导函数,可得f′(x)=3x2+2ax+1则由题意,方程3x2+2ax+1=0的两个不等根都在区间(﹣1,1)内,构造函数g(x)=3x2+2ax+1,则,即,∴<a<2∴实数a的取值范围是(,2)故答案为:(,2).14.若tan+=4则sin2=
.参考答案:略15.若以连续两次掷骰子分别得到的点数m,n作为点P的坐标,则点P落在由和两坐标轴所围成的三角形内部(不含边界)的概率为________.参考答案:【分析】由掷骰子的情况得到基本事件总数,并且求得点落在指定区域的事件数,利用古典概型求解.【详解】以连续两次掷骰子分别得到的点数,作为点P的坐标,共有36个点,而点P落在由和两坐标轴所围成的三角形内部(不含边界),有3个点:,所以概率故得解.【点睛】本题考查古典概型,属于基础题.16.已知等比数列{an}中,a1=3,a4=81,当数列{bn}满足bn=log3an,则数列的前2013项和S2013为
。参考答案:17.已知函数f(x)=|x-2|-|x-5|,则不等式f(x)≥x2-8x+15的解集为________.参考答案:[5-√3,6]三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.,设
(Ⅰ)求函数的周期及单调增区间。(Ⅱ)设的内角的对边分别为,已知,求边的值.参考答案:=
x+……即2k……所以…函数的单调递增区间是【2k】周期T=2
6分(Ⅱ)由,得由得.又由得
,
……12分19.已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为直角时,求△OMN的面积.参考答案:【考点】抛物线的简单性质.【分析】(Ⅰ)设抛物线方程为x2=2py,把点(2,1)代入运算求得p的值,即可求得抛物线的标准方程;(Ⅱ)由直线与圆相切可得,把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及∠MON为直角则,求得t=4,运用弦长公式求得|MN|,求得点O到直线的距离,从而求得△OMN的面积.【解答】解:(Ⅰ)设抛物线方程为x2=2py,由已知得:22=2p所以p=2,所以抛物线的标准方程为x2=4y;(Ⅱ)因为直线与圆相切,所以,把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0,由△=16k2+16t=16(t2+2t)+16t>0得t>0或t<﹣3,设M(x1,y1),N(x2,y2),则x1+x2=4k且x1?x2=﹣4t,∵∠MON为直角∴,解得t=4或t=0(舍去),∵,点O到直线的距离为,∴=.20.(本题满分12分)如图,在直三棱柱中,,点是的中点。(1)求证:∥平面(2)如果点是的中点,求证:平面平面.参考答案:21.(本小题满分14分)已知中心在原点,焦点在x轴上的椭圆的离心率为,为其焦点,一直线过点与椭圆相交于两点,且的最大面积为,求椭圆的方程.
参考答案:由=得所以椭圆方程设为
------2分设直线,由得:设,则是方程的两个根由韦达定理得
-------5分所以
-------7分=
-------12分当且仅当时,即轴时取等号所以,所求椭圆方程为
-------14欢迎广大教师踊跃来稿,稿酬丰厚。高考资源网()
您身边的高考专家
22.如图几何体中,底面ABCD为正方形,PD⊥平面ABCD,,且.(1)求证:BE∥平面PDA;(2)求PA与平面PBD所成角的大小.参考答案:(1)见解析(2)【分析】(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度车辆使用安全教育与责任保险合同4篇
- 2025年度个人私有房屋购买合同(精装修家居环保材料版)4篇
- 2025年度个性化定制个人房屋建造合同范本2篇
- 二零二五年度食品加工厂原料供应合同2篇
- 二零二五年度成品油储备库建设与运营合同4篇
- 二零二五年度出租车电召服务系统升级改造合同4篇
- 2025年个人房产抵押合同修订版
- 2025委托经营管理合同香格里拉范本
- 2025混凝土泵车租赁合同
- 二零二五年度车辆买卖合同含车辆过户及手续办理4篇
- GB/T 16895.3-2024低压电气装置第5-54部分:电气设备的选择和安装接地配置和保护导体
- 安徽省合肥市2025年高三第一次教学质量检测地理试题(含答案)
- 计划合同部部长述职报告范文
- 统编版八年级下册语文第三单元名著导读《经典常谈》阅读指导 学案(含练习题及答案)
- 风光储储能项目PCS舱、电池舱吊装方案
- 人教版高一地理必修一期末试卷
- GJB9001C质量管理体系要求-培训专题培训课件
- 二手车车主寄售协议书范文范本
- 窗帘采购投标方案(技术方案)
- 基于学习任务群的小学语文单元整体教学设计策略的探究
- 人教版高中物理必修一同步课时作业(全册)
评论
0/150
提交评论