四川省成都市外国语中学2023年高三数学文上学期期末试卷含解析_第1页
四川省成都市外国语中学2023年高三数学文上学期期末试卷含解析_第2页
四川省成都市外国语中学2023年高三数学文上学期期末试卷含解析_第3页
四川省成都市外国语中学2023年高三数学文上学期期末试卷含解析_第4页
四川省成都市外国语中学2023年高三数学文上学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市外国语中学2023年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知命题p:lnx>0,命题q:ex>1则命题p是命题q的()条件A.充分不必要 B.必要不充分 C.充要

D.既不充分也不必要参考答案:A2.已知a,b是实数,则“a>|b|”是“a2>b2”的(

) A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件参考答案:B考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先判断p?q与q?p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系解答: 解:“a>|b|”能推出“a2>b2”,但是当a=﹣2,b=1时,由a2>b2”推不出“a>|b|”“a>|b|”是“a2>b2”的充分不必要条件,故选:B.点评:此题主要考查不等式与不等关系之间的联系,考查充要条件的有关定义.3.已知为抛物线上不同两点,且直线倾斜角为锐角,为抛物线焦点,若

则直线倾斜角为

A.

B.

C.

D.

参考答案:D略4.抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,且该焦点到双曲线C的渐近线的距离为1,则双曲线C的方程为()A.x2﹣=1 B.y2﹣=1 C.﹣y2=1 D.﹣y2=1参考答案:D【考点】抛物线的简单性质;双曲线的简单性质.【分析】先求出抛物线的焦点坐标,即可得到c=2,再求出双曲线的渐近线方程,根据点到直线的距离求出b的值,再求出a,问题得以解决.【解答】解:∵抛物线y2=8x中,2p=8,∴抛物线的焦点坐标为(2,0).∵抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,∴c=2,∵双曲线C:﹣=1(a>0,b>0)的渐近线方程为y=±x,且该焦点到双曲线C的渐近线的距离为1,∴=1,即=1,解得b=1,∴a2=c2﹣b2=3,∴双曲线C的方程为﹣y2=1,故选:D.5.设变量满足,若目标函数的最小值为,则的值为(

)A.

B.

C.

D.参考答案:B略6.运行如图所示的程序框图,则输出的结果S为(A)1007

(B)1008

(C)2013

(D)2014参考答案:A7.已知等差数列的公差若则该数列的前项和的最大值为(

)A. B. C. D.参考答案:C8.如果有95%的把握说事件A和B有关系,那么具体计算出的数据

(

)A.K2>3.841

B.K2<3.841C.K2>6.635

D.K2<6.635参考答案:A9.一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态.已知成角,且的大小分别为2和4,则的大小为A.6

B.2

C.

D.

w.w.w.k.s.5.u.c.o.m

参考答案:D10.若(其中i为虚数单位),则复数z的虚部是(

)A.2i B.-2i C.-2 D.2参考答案:D【分析】计算出,即可求出复数z的虚部.【详解】复数的虚部是2故选D.【点睛】本题考查了复数的除法运算,其关键是熟练掌握其运算法则.二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果与都是无理数,则直线不经过任何整点;③直线经过无穷多个整点,当且仅当经过两个不同的整点;④直线经过无穷多个整点的充分必要条件是:与都是有理数;⑤存在恰经过一个整点的直线.参考答案:①③⑤略12.已知x,y为正实数,则的最小值为_________.参考答案:【分析】化简题目所求表达式,然后利用基本不的等式求得最小值.【详解】原式,令,则上式变为,当且仅当时等号成立,故最小值为.【点睛】本小题主要考查利用基本不等式求最小值,考查化归与转化的数学思想方法,属于中档题.13.已知函数y=f(x)是偶函数,y=g(x)的奇函数,它们的定义域为[﹣π,π],且它们在x∈[0,π]上的图象如图所示,则不等式的解集为.参考答案:【考点】函数奇偶性的性质;函数的图象.【分析】由不等式可知f(x),g(x)的函数值同号,观察图象选择函数值同号的部分,再由f(x)是偶函数,g(x)是奇函数,得到f(x)g(x)是奇函数,从而求得对称区间上的部分,最后两部分取并集.【解答】解:x∈[0,π],由不等式,可知f(x),g(x)的函数值同号,即f(x)g(x)>0.根据图象可知,当x>0时,其解集为:(0,),∵y=f(x)是偶函数,y=g(x)是奇函数,∴f(x)g(x)是奇函数,∴当x<0时,f(x)g(x)<0,∴其解集为:(﹣π,﹣),综上:不等式的解集是,故答案为.14.已知向量a=(1,0),b=(1,1),则

(Ⅰ)与2a+b同向的单位向量的坐标表示为____________;(Ⅱ)向量b-3a与向量a夹角的余弦值为____________。13.参考答案:(Ⅰ);(Ⅱ)

(Ⅰ)由,得.设与同向的单位向量为,则且,解得故.即与同向的单位向量的坐标为.(Ⅱ)由,得.设向量与向量的夹角为,则.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了.来年需注意平面向量基本定理,基本概念以及创新性问题的考查.15.直线被圆截得弦长为__________。参考答案:16.函数的值域是 。参考答案:(0,1)∪(1,+∞)略17.已知

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的?倍(?>1),过点C(?1,0)的直线l与椭圆C2交于A,B两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.

参考答案:(Ⅰ)所给直线方程变形为,

…......……………1分可知直线所过定点为.

...............………2分∴椭圆焦点在y轴,且c=,依题意可知b=2,∴a2=c2+b2=9.

……………3分椭圆C1的方程标准为.

………………4分(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),………………6分∵?>1,∴点C(?1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),

……………..…7分由得.由韦达定理得.

………………8分∵,而点C(?1,0),∴(?1?x1,?y1)=2(x2+1,y2),∴y1=?2y2,

………………..…9分即y1+y2=?y2

故.

………………10分∴△OAB的面积为.

.......................……11分上式取等号的条件是,即k=±时,△OAB的面积取得最大值.所以直线的方程为或.

………………12分19.已知椭圆的左焦点F(-2,0),上顶点B(0,2).(1)求椭圆C的方程;(2)若直线与椭圆C交于不同两点M,N,且线段MN的中点G在圆上,求m的值.参考答案:(1)由于题意可得,,,由得所以故椭圆C的方程为.(2)设点M,N的坐标分别为,,线段MN的中点,由消y得:,,所以所以,因为点在圆上,所以解得:20.已知动点M到定点和定直线的距离之比为,设动点M的轨迹为曲线C.(I)求曲线C的方程;(II)设,过点F作斜率不为0的直线与曲线C交于两点A,B,设直线PA,PB的斜率分别是,求的值.参考答案:(I)设,则依题意有,整理得,即为曲线C的方程.

(Ⅱ)设直线,则由联立得:

∴;即21.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)求证:无论点E在BC边的何处,都有;(3)当为何值时,与平面所成角的大小为45°.参考答案:解:⑴当E是BC中点时,因F是PB的中点,所以EF为的中位线,

故EF//PC,又因面PAC,面PAC,所以EF//面PAC……4分⑵证明:因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,

又DA//CB,所以CB⊥面PAB,而面PAB,所以,又在等腰三角形PAB中,中线AF⊥PB,PBCB=B,所以AF⊥面PBC.而PE面PBC,所以无论点E在BC上何处,都有………8分⑶以A为原点,分别以AD、AB、AP为x¥y¥z轴建立坐标系,设,

则,,,设面PDE的法向量为,

由,得,取,又,

则由,得,解得.

故当时,PA与面PDE成角……………12分

略22.已知数列中,,,数列满足.⑴求证数列是等差数列,并求数列的通项公式;⑵求数列的前项和;⑶设数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论