




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市斑竹园中学2023年高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.双曲线A.
B.
C.
D.参考答案:B 2.已知数列{an}满足an+1=若a1=,则a2012的值为() A. B. C. D.参考答案:C【考点】数列递推式. 【专题】计算题;函数思想;数学模型法;等差数列与等比数列. 【分析】由已知数列递推式结合首项求出数列前几项,可得数列{an}是以3为周期的周期数列,由此求得a2012的值. 【解答】解:由已知数列递推式an+1=,且a1=, 求得,,,… 由上可知,数列{an}是以3为周期的周期数列, 则a2012=. 故选:C. 【点评】本题考查数列递推式,关键在于对数列周期的发现,是基础题. 3.i是虚数单位1+i3等于A.i
B.-i
C.1+i
D.1-i参考答案:D
本题主要考查虚数单位i的运算,难度不大。由,所以,故选D4.设复数z的共轭复数为,若z=1﹣i(i为虚数单位),则复数+z2+|z|在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数+z2+|z|=+(1﹣i)2+|1﹣i|=﹣2i+=﹣i+.在复平面内对应的点位于第四象限.故选:D.5.已知直线、,平面、,且,给出下列四个命题,其中正确命题的个数为
(1)若,则
(2)若,则(3)若,则
(4)若,则
(A)
(B)
(C)
(D)参考答案:答案:B6.函数的图像可能是
(
)参考答案:B略7.下列函数中既是偶函数,又是区间上的减函数的是(
)
A、
B、
C、
D、参考答案:D8.设x∈R,则“x=1”是“复数z=(x2﹣1)+(x+1)i为纯虚数”的(
) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件参考答案:C考点:必要条件、充分条件与充要条件的判断.专题:常规题型.分析:由于复数z=(x2﹣1)+(x+1)i为纯虚数,则其实部为0,虚部不为0,故可得到x的值,再与“x=1”比较范围大小即可.解答: 解:由于复数z=(x2﹣1)+(x+1)i为纯虚数,则,解得x=1,故“x=1”是“复数z=(x2﹣1)+(x+1)i为纯虚数”的充要条件.故答案为C.点评:本题考查的判断充要条件的方法,我们可以先判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.9.已知函数,将的图象向右平移个单位,得到的图象,下列关于函数的性质说法正确的是(
)A.的图象关于对称 B.的图象关于点对称C.在区间上单调递减 D.在区间上单调递增参考答案:D【分析】通过平移规则得到函数,再逐一对每个选项进行判断得到答案.【详解】由题意知,令,得,即在区间上单调递增.故选D.【点睛】本题考察了三角函数的平移,对称和单调性等性质,属于中档题型.10.计划将排球、篮球、乒乓球个项目的比赛安排在个不同的体育馆举办,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过个的安排方案共有A.种 B.种 C.种 D.种
参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.(1+2)3(1﹣)5的展开式中x的系数是
.参考答案:2【考点】二项式系数的性质.【分析】把所给的式子按照二项式定理展开,即可求得展开式中x的系数.【解答】解:由于(1+2)3(1﹣)5=(+++)?(++…+),故展开式中x的系数为1×(﹣)+×4×1=2,故答案为2.12.已知袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,至少得到1个白球的概率是,从中任意摸出2个球,得到的都是白球的概为
参考答案:13.已知函数为偶函数,其图象上相邻的两个对称轴之间的距离为,则的值为___________参考答案:
或14.设函数y=f(x)的定义域为D,如果存在非零常数T,对于任意x∈D,都有f(x+T)=T?f(x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f(x)的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”y=f(x)的“似周期”为﹣1,那么它是周期为2的周期函数;②函数f(x)=x是“似周期函数”;③函数f(x)=2x是“似周期函数”;④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.其中是真命题的序号是.(写出所有满足条件的命题序号)参考答案:①④【考点】抽象函数及其应用.【专题】计算题;新定义;函数思想;综合法;函数的性质及应用.【分析】①由题意知f(x﹣1)=﹣f(x),从而可得f(x﹣2)=﹣f(x﹣1)=f(x);②由f(x+T)=T?f(x)得x+T=Tx恒成立;从而可判断;③由f(x+T)=T?f(x)得2x+T=T2x恒成立;从而可判断;④由f(x+T)=T?f(x)得cos(ω(x+T))=Tcosωx恒成立;即cosωxcosωT﹣sinωxsinωT=Tcosωx恒成立,从而可得,从而解得.【解答】解:①∵似周期函数”y=f(x)的“似周期”为﹣1,∴f(x﹣1)=﹣f(x),∴f(x﹣2)=﹣f(x﹣1)=f(x),故它是周期为2的周期函数,故正确;②若函数f(x)=x是“似周期函数”,则f(x+T)=T?f(x),即x+T=Tx恒成立;故(T﹣1)x=T恒成立,上式不可能恒成立;故错误;③若函数f(x)=2x是“似周期函数”,则f(x+T)=T?f(x),即2x+T=T2x恒成立;故2T=T成立,无解;故错误;④若函数f(x)=cosωx是“似周期函数”,则f(x+T)=T?f(x),即cos(ω(x+T))=Tcosωx恒成立;故cos(ωx+ωT)=Tcosωx恒成立;即cosωxcosωT﹣sinωxsinωT=Tcosωx恒成立,故,故ω=kπ,k∈Z;故正确;故答案为:①④.【点评】本题考查了学生对新定义的接受与应用能力,同时考查了恒成立问题.15.四棱锥P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,各顶点都在同一球面上,若该棱锥的体积为4,,则此球的表面积等于______.参考答案:17π【分析】根据该四棱锥内嵌于长方体中,计算长方体体对角线再算外接球表面积即可.【详解】因为四边形ABCD是正方形,且平面ABCD,所以可以将该四棱锥内嵌于长方体中,因为棱锥体积.则该长方体的长、宽、高分别为2、2、3,它们的外接球是同一个,设外接球直径为,所以,所以表面积为.故答案为:【点睛】本题主要考查了四棱锥外接球表面积的计算,其中外接球直径为内嵌长方体的体对角线,属于中等题型.16.三角形ABC的内角A,B的对边分别为a,b,若,则三角形ABC的形状为.参考答案:等腰三角形或直角三角形【考点】正弦定理;两角和与差的余弦函数.【专题】计算题;转化思想;分析法;三角函数的图像与性质.【分析】用诱导公式化简已知,利用正弦定理将acosA=bcosB中等号两边的边转化为该边所对角的正弦,化简整理即可.【解答】解:∵在△ABC中,,∴acosA=bcosB,∴由正弦定理得:a=2RsinA,b=2RsinB,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴sin2A=sin2B,∴2A=2B或2A=π﹣2B,∴A=B或A+B=,∴△ABC为等腰或直角三角形,故答案为:等腰三角形或直角三角形.【点评】本题考查三角形的形状判断,着重考查正弦定理与二倍角的正弦的应用,属于中档题.17.若实数x,y满足xy+3x=3(0<x<),则的最小值为
.参考答案:8【考点】基本不等式.【分析】实数x,y满足,可得x=∈,解得y>3.则=y+3+=y﹣3++6,利用基本不等式的性质即可得出.【解答】解:∵实数x,y满足,∴x=∈,解得y>3.则=y+3+=y﹣3++6≥+6=8,当且仅当y=4(x=)时取等号.故答案为:8.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图21,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(1)求椭圆C的离心率;(2)已知△AF1B的面积为40,求a,b的值.
参考答案:解:(1)由题意可知,△AF1F2为等边三角形,a=2c,所以e=.(2)(方法一)a2=4c2,b2=3c2.直线AB的方程可为y=-(x-c).将其代入椭圆方程3x2+4y2=12c2,得B.所以|AB|=·=c.由S△AF1B=|AF1|·|AB|sin∠F1AB=a·c·=a2=40,解得a=10,b=5.(方法二)设|AB|=t.因为|AF2|=a,所以|BF2|=t-a.由椭圆定义|BF1|+|BF2|=2a可知,|BF1|=3a-t.再由余弦定理(3a-t)2=a2+t2-2atcos60°可得,t=a.由S△AF1B=a·a·=a2=40知,a=10,b=5.19.设函数.(Ⅰ)求的单调区间;(Ⅱ)设函数,若当时,恒成立,求的取值范围.参考答案:(Ⅰ)解:因为,其中.所以,
…………2分
当时,,所以在上是增函数………………4分
当时,令,得
所以在上是增函数,在上是减函数.
………………6分(Ⅱ)解:令,则,根据题意,当时,恒成立.
………8分所以(1)当时,时,恒成立.所以在上是增函数,且,所以不符题意…………10分(2)当时,时,恒成立.所以在上是增函数,且,所以不符题意………………12分(3)当时,时,恒有,故在上是减函数,于是“对任意都成立”的充要条件是,即,解得,故.
综上所述,的取值范围是.
……………15分
略20.已知函数(Ⅰ)求函数图象对称中心的坐标;(Ⅱ)如果的三边满足,且边所对的角为,求的取值范围。参考答案:(I);(II).(Ⅱ)由已知b2=ac,即的范围是。考点:三角变换公式及余弦定理等有关知识的综合运用.21.师大附中高三年级学生为了庆祝第28个教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有两项技术指标需要检测,设各项技术指标达标与否互不影响,若项技术指标达标的概率为项技术指标达标的概率为,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设表示其中合格品的个数,求的分布列及.参考答案:解(1)设一个工艺品经过检测至少一项技术指标达标,则都不达标,故(2)依题意知
0123422.(12分)已知函数f(x)=ax3+3x2-x+1在R上是减函数,求实数a的取值范围.参考答案:解析:f′(x)=3ax2+6x-1,其判别式△=36+12a.
(4分)当a<-3时,有△<0,∴f′(x)<0,f(x)在R上是减函数;
(6分)当a=-3时,有△=0,此时,由于y=-x3是R上的减函数,所以f(x)在R上是减函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长委员会活动计划
- 动物生理与行为的关联性:试题及答案
- 2024年投资咨询工程师行业前景试题及答案
- 2024年区域经济发展问题试题及答案
- 2024年育婴师模拟考试试题及答案
- 人流术后恢复护理查房
- 2024年监理考试复习框架试题及答案
- 2024监理工程师重点难点试题及答案
- 2024人力资源管理新趋势试题及答案
- 黑龙江林业职业技术学院《日语听力Ⅱ》2023-2024学年第二学期期末试卷
- 秦汉考古Uooc课程答案
- 间质性肺病个案护理
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 医疗器械考试题及答案
- 画饼充饥儿童故事绘本 课件
- 土木工程CAD-终结性考核-国开(SC)-参考资料
- 脑梗死护理查房教学
- (新版)浙江省地方执法证考试题库及答案
- 车辆交通安全培训全面指南
- 手术室护士子宫切除手术护理配合常规
- 科技大篷车进校园方案
评论
0/150
提交评论