




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SPSS回归分析
SPSS回归分析1、一企业排水的COD及BOD5的结果见下表。COD和BOD5实测值样品号 COD BOD样品号 COD BOD121222323424525626 5727828929103011311232133314341535163617371838193920401)画散点图;2)判断COD与BOD之间是否大致呈线性关系;3)用最小二乘估计求回归方程;4)计算COD与BOD的决定系数;5)对回归方程作残差图,并作分析;6)计算当COD=99时,BOD的值;7)给出置信水平为95%的预测区间。解:1〕画散点图①翻开SPSS输入数据,点击图形-旧对话框一散点/点状(S),如下列图;
咬件L测E蜩[WiH:片中二用ff二值物凹EK3六用程*理由口/喉助L昌EJl、r建帖咫再世通出扉遥;:臣图『:通农俱研3城应寻al1:旧1潴的口 断COD日跳._笠耳 1__1114.7015.5311:-=f.L263215493031:二■:;.36735226§£j而也囹磅].d399611.43.i:-=K5&2.0411.00&WLK47.90驷曲冏祝1747J49靛"1i±*MC_raiuru87L2332兆qaoi&i3040~~1人口右耳电1Kl1D14605BdOS后独西消聿国…1151W13间疝ttsfflfjx-121300775021330176熊1d1160273761559.0022.0316强就31.6517365469018146516664.1994.7543322DBL51照四21096449.32229730加Q123210510.032474.(1423.20%Rd的口目力日k②进入散点图/点图,选择简单分布,点击定义,如下列图;③进入简单散点图对话框,选择COD进入乂轴、80口5进入丫轴,点击确定;
④结果输出如下列图。1DO.ODBC.00-60.00-40.00-20.00-BC.00-60.00-40.00-20.00-.00-.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00COD2)判断线性关系操作:分析、回归、线性用SPSS验证:①翻开SPSS输入数据,点击分析一回归一线性,翻开线性回归对话框,如下列图;阿丰:寻融与-…传邦禽1T-EMSPSSSt-iirEg总据纳资物 I交杵也卜 ?.WHCV>制明过)分析电JItEfAiCM)出flitB麻国)电T口四目■昌应Jte-'IF:舌 ►昌fit比宣 ,NfflB谨■eonBOM 7l上UHEKILEl; *q^:交:呈11347015£9一般哨曲国理叵卜,2632549-a0厂工或注胆SP ►J67.362260野目院至理)43a9611口355ZG411aoEB3(5) 快回回遗妣也曜胴1&.G141.4247:gD阳川版性强型iQ: 比ESisttckr147S49-56EB曲照牯计g.e75Z33Z.36牌蛉 ♦EEI丽分量小斗石.9BO.61贵鼻:Mi 卜-n]二元i_uR・i:匚..ID14SOS的口日开学端I*底峨iMj ►115180136112130.0776.02生存至邂逅) 卜133017力・晌应图> ”1MPrgH口「,个…IV)...1559.0022.0B圻■忆因►「国产《小川色,.1G&2gG31GO32科ri,LJ f庭3两防最小二克法gj…1735S46■号口扃*E^B」⑨ 卜身性丹由GATRE⑴...1B14G51B5G4居AOCAB出国9.「19&47542323DB653«2621M644932FS9730-Ifl012321061033247404232D29&4339EQ口②进入线性回归对话框,选择BOD5进入因变量,COD进入自变量,点击确定,如下列图;因受里5:WLE权重也上因受里5:WLE权重也上璜定][粘贴史川重苣困][取消][帮助③结果如下列图。1-1输入/移去的变量模型输入的变量移去的变量方法1CODb.输入a.因变量:BOD5b.已输入所有请求的变量。1-2模型J汇总模型RR方调整R方标准估计的误差1.885a.784.7783a.预测变量:(常量),COD。1-3Anovaa模型平方和df均方FSig.回归1.000b1 残差38总计39
b.预测变量:(常量),COD。1-4系数2模型非标准化系数标准系数tSig.B的95.0%置信区间B标准误差试用版下限上限1席量)COD.492.042.885.172.000.408.577a.因变量:BOD5④结果分析:表1-1中显示的是拟合过程中变量输入/移去模型的情况记录,由于只引入了一个自变量,所以只出现一个模型1,该模型中“COD〃为进入的变量,没有移除的变量,具体的输入/移去方法为输入。表1-2是模型拟合概述,列出了模型的R、R2、调整R2及估计标准误。R2值越大所反映的两变量的共变量比率越高,模型与数据的拟合程度越好。此题所用数据拟合结果显示:R(所考察的自变量和因变量之间的相关系数)=85,R2(拟合线性回归的决定系数)=84,经调整后的R2=78,标准误的估计=。表1-3方差分析表,列出了变异源、自由度、均方、F值及对F的显著性检验。此题中回归方程显著性检验结果说明:回归平方和为,残差平方和为,总平方和为,对应的F统计量的值为,Sig=0.000<0.05,可以认为所建立的回归方程有效,所以COD与BOD之间成线性关系。 5表1-4回归系数表,列出了常数及非标准化回归系数的值及标准化的回归系数,同时对其进行显著性检验。此题中非标准化的回归系数3的估计值为,标准误为0.042,标准化的回归系数为85,回归系数显著性检验t统计量的值为,对应显著性水平,可以偏回归系数与0有显著性差异,被解释的变量和解释的变量的线性关系是显著的,因此,此题回归分析得到的回归方程为:y=-x。对方程的方差分析及对回归系数的显著性检验均发现,所建立的回归方程显著。综上所述,COD与BOD之间大致呈线性关5系。TOC\o"1-5"\h\z人 人3)用最小二乘估计求回归方程y=B+Bx0 1人 /\ /\由表1-4得到,p 〔常量〕=-5.36,p=0.492。由公式y=(3+[3x]x为0 1 0iCOD,y为BOD)得到y=x054)决定系数表1-2是模型拟合概述,列出了模型的R、R2、调整R2及估计标准误。R2值越大所反映的两变量的共变量比率越高,模型与数据的拟合程度越好。此题所用数据拟合结果显示:R(所考察的自变量和因变量之间的相关系数)=85,R2(拟合线性回归的决定系数)=84,经调整后的R2=78,标准误的估计二。5)对回归方程作残差图,并作分析;①重复第2问的前2步,点击绘制,出现线性回归:图对话框,选择“ZPRED(标准化预测值)〃进入丫(Y)、“SRESID(学生化残差)〃进入乂2(X),点击继续,如下列图;②结果运行如下列图。
1-5残差统计量a极小值极大值均值标准偏差N预测值40标准预测值.00040预测值的标准误差.54840调整的预测值40残差.0000040标准残差.000.98740Student化残差.00240已删除的残差.0334140Student化已删除的残差.01240Mahal。距离.000.97540Cook的距离.000.214.030.04740居中杠杆值.000.083.025.02640因变量:BOD5a.图1-6散点图区I变置二B0D5叵归标净化预.廿信2-1-0123叵归标净化预.廿信2-1-0123回归Student化残差③结果分析:残差图主要用于残差分析,判断残差与因变量之间是否相互独立,还可以判断模型的拟合效果。从图1-6可以看出各点随即分布在e=0为中心的横带中,证明了该模型时适合的。同时有局部点出现了异常,这种离群点时值得进
步研究。6)计算当COD=99时,BOD的值;①在EXCEL中输入数据5插入函数,在选择类别中的常用函数中选择“FORECAST如下列图;IK及E1IK及E1MS715.E9ZG3.2G49.8B7.3522.在39.M11.43562.Od11.8141.42.17.947.84B.5675.23兆.3&,j旨口.6L30.目1i145.OESE.0511511E13.611-130.07?S.0213SO.176.0214LI氏273.761;E52.OBIl-!,:'31.601735.5m6.9ISld6.El65.61139斗T6皑3220!!■:■38.2&31si网5■-::22g7.ag■1i2321.QSLO.S3247』CIU23.22E3£4.833EI2L也6213.US2761,7033・36■■口口rurnna所以当COD=99时,BOD7〕给出置信水平为95%的预测区间①在输出文档中,选中散点图,右击选择编辑内容、在单独窗口中,出现图标编辑器,如下列图;ICGOO-即00-即00-j0>都J海型日础1ICGOO-即00-即00-j0>都J海型日础1於..JXXMJ如第6DMKiwIKK131C0 14。IME国表茹隔黑 -nx受冲海珀茶福■am元而帮助三,工]国?~~鼻 匚区回二,畦U「且叫: :. .―.一二B3至言=八卜・卜一卜|"犀山质处吠髓巨人口1CC.0D-BO.CID-EQ.Q口一4C'.0D-20.00-.QD-20.OT40.0060.CO80.00佃.口口120.OTMOOTBO.CID-EQ.Q口一4C'.0D-20.00-.QD-20.OT40.0060.CO80.00佃.口口120.OTMOOTCOD②在图标编辑器对话框中,选择元素f总计拟合线f属性,在属性中的拟合线中的拟合方法中选择线性,置信区间中选择个体,如下列图;文件翁辑查君廷则元更帮助fl性Lii 比130.00-BO.OO-皿区市工城纲国叱演)嘛记上息计期合级哟子期拟£缆Lla显亓分布也的I分解分区©¥的用值,凶⑨优”1_:'至抑台的点的百分比0r-30.00-◎二次回◎三次户程,X1:SS.10.00-20.00-[应用J[取消J[帮助J血信囱瓦◎无国◎电直:E;文件翁辑查君廷则元更帮助fl性Lii 比130.00-BO.OO-皿区市工城纲国叱演)嘛记上息计期合级哟子期拟£缆Lla显亓分布也的I分解分区©¥的用值,凶⑨优”1_:'至抑台的点的百分比0r-30.00-◎二次回◎三次户程,X1:SS.10.00-20.00-[应用J[取消J[帮助J血信囱瓦◎无国◎电直:E;零个力。.0020.0040.0D60.0D3G.0D100.0012D.0O14D.OO■ICOD③运行结果如下列图。100.00-耳线性二口、84gO£Q80.00-60.00-40.00-20.00=40.0060.0080.00100.00120.00 140.00.00-2=2801.L=x/2'80ia1L=XV2801=COD02日XYm":画电1葡融幽;lit显开的脸交 图表大小2、在一项水分渗透试验中,得观测时间和水的重量的数据如下表。观测时间和水的重量数据观测时间x/s1 2 4 8 16 32 64水的重量y/g 3,851)画出散点图;2)求曲线回归方程y=axb3)对lny与lnx之间的回归关系进行显著性检验a解:1〕1〕画散点图①翻开SPSS输入数据,点击图形一旧对话框一散点/点状(S),如下列③进入简单散点图对话框,选择水的重量进入乂轴、观测时间进入丫轴,点击确定;④结果输出如下列图。4.50-物Jftf弑2.^0-Q2040冷则I时间2〕求曲线回归方程y=axb根据题目,可以判断出这题的回归方程需要用曲线估计来算出。操作:分析、回归、曲线估计用SPSS验证:①翻开SPSS输入数据,点击分析f回归f曲线估计,翻开线性回归对话框,如下列图;②进入线性回归对话框,选择水的重量进入因变量,观测时间进入变量,在模型中选择指数分布,点击确定,如下列图;③结果运行如下列图。
2-1模型汇总RR方调整R方估计值的标准误.968.938.925.047自变量为观测时间。2-2ANOVA平方和df均方FSig.回归.1661.166.000残差.0115.002总计.1776自变量为观测时间。2-3系数未标准化系数标准化系数tSig.B标准误Beta观测时间〔常数〕.001.093.000.000因变量为工(水的重量)。观测时间④结果分析:表2-1是模型拟合概述,列出了模型的R、R2、调整R2及估计标准误,R2=0.938,调整后的R2=0.925,估计值得标准误=0.047。R2=0.968,说明自变量与因变量的相关性很强。R2=0.938,说明变量x可以解释因变量y的93.8%的差异性。
表2-2显示因变量的方差来源、方差平方和、自由度、均方、F检验统计量和显著性水平。从表中可以看出,方差来源有回归、残差和总和,F检验的统计量的观测值为75.316,Sig(显著性概率)为0.000,即检验假设“H0:回归系数B=0〃,从而应拒绝零假设,说明因变量和自变量的曲线关系是非常显著,可建立指数模型。表2-3中显示回归模型的常数项、回归系数8值及其标准误差、标准化的回归系数8613、统计量t值以及显著性水平〔Sig〕。从表中可以看出,回归模型的常数项为3.980,自变量“观测时间〃的回归系数为-0.007。因此,可以得到回归方程为:yx〔x观测时间,y为水的重量)3)对lny与lnx之间的回归关系进行显著性检验a令y'=lny,x'=lnx,a‘=lna,b‘=b于是线性化后线性回归方程为y=a’+b‘x将原始数据施行上述变换后得x0y操作:分析、回归、线性翻开SPSS输入数据,点击分析一回归一线性,翻开线性回归对话框,如下列图;cft-F)编疆百规困:或数据色转坳口分析⑨直销回雌⑨尖靠上巨:赛口城)帮助②选择y进入因变量,x进入自变量,田圭②选择y进入因变量,x进入自变量,田圭 卜融画il 1妻一; 卜士“坨伯吸 1一般蛙出国型电:卜■小切件但型.艮三模理,:当 卜相关过》 卜童;二SE5" 变量交量回归(R)财敕瑞世模理里)祖.三反埼用也运走支至®卅七百柠/®羽:RI①主与国蓟3-^HuJTZrJ)露琅立特分析:二一H自礴住建模但〕…!鼻哇。…・曲理街-:£..
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中历史人民版一轮课件选34“亚洲觉醒”的先驱和无产阶级革命家
- 2024届鲍沟中学中考数学四模试卷含解析
- 中式快餐的未来发展趋势展望
- 心理健康护理实践
- 护理实践中的协作与合作技巧
- 妆容服务的质量和安全评估标准
- 房地产项目管理中的沟通技巧
- 四年级数学四则混合运算综合监控试题
- 一件难忘的物品物品背后的故事分享11篇
- 我的暑假生活回顾记事作文(14篇)
- 商务领域安全生产隐患排查培训
- 2024年江苏省《辅警招聘考试必刷500题》考试题库附答案(能力提升)
- 园林绿化养护精细化管理
- 真需求-打开商业世界的万能钥匙
- 建筑工程公司安全生产管理实施细则(2篇)
- 钠离子电池-武汉大学杨汉西老师文档
- 2024年考研英语一阅读理解80篇试题及答案
- DB65-T 4824-2024 干旱区蒸散发量计算规范
- 2025届高考生物备考说课稿:生态系统的物质循环、信息传递和稳定性
- 我是为了您的孩子 您是为了我的学生-期中测试家长会 课件
- 2024年全县金融工作会议讲话材料例文(5篇)
评论
0/150
提交评论