2022年新高考全国I卷数学压轴题答案详解及解题技巧(含模拟专练)_第1页
2022年新高考全国I卷数学压轴题答案详解及解题技巧(含模拟专练)_第2页
2022年新高考全国I卷数学压轴题答案详解及解题技巧(含模拟专练)_第3页
2022年新高考全国I卷数学压轴题答案详解及解题技巧(含模拟专练)_第4页
2022年新高考全国I卷数学压轴题答案详解及解题技巧(含模拟专练)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年全国统一高考数学试卷(新高考I卷)压轴真题解读7.设,则(

)A. B. C. D.【命题意图】本题考查三个数的大小的判断,考查构造法、导数性质等基础知识,考查运算求解能力.【答案】C【解析】设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.【思想方法】1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.8.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(

)A. B. C. D.【命题意图】本题主要考查了正四棱锥的外接球问题,考查了利用导数研究函数的最值.【答案】C【解析】∵球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.【感悟升华】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.12.已知函数及其导函数的定义域均为,记,若,均为偶函数,则(

)A. B. C. D.【命题意图】本题考查函数的奇偶性,极值点与对称性,考查了转化思想和方程思想.【答案】BC【解析】因为,均为偶函数,所以即,,所以,,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.【知识拓展】周期性与奇偶性结合的问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.函数f(x)满足的关系f(a+x)=f(b-x)表明的是函数图象的对称性,函数f(x)满足的关系f(a+x)=f(b+x)(a≠b)表明的是函数的周期性,在使用这两个关系时不要混淆.16.已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【命题意图】本题主要考查直线与椭圆的综合应用,需要学生很强的综合能力【答案】13【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.21.已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.(1)求l的斜率;(2)若,求的面积.【命题意图】本题考查了直线与双曲线的综合【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.22.已知函数和有相同的最小值.(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【命题意图】本题考查了导数的应用,利用导数求函数的单调性,函数的零点,解题的关键是利用函数的单调性求得x1、x3和x2的数量关系.【解析】(1)的定义域为,而,若,则,此时无最小值,故.的定义域为,而.当时,,故在上为减函数,当时,,故在上为增函数,故.当时,,故在上为减函数,当时,,故在上为增函数,故.因为和有相同的最小值,故,整理得到,其中,设,则,故为上的减函数,而,故的唯一解为,故的解为.综上,.(2)由(1)可得和的最小值为.当时,考虑的解的个数、的解的个数.设,,当时,,当时,,故在上为减函数,在上为增函数,所以,而,,设,其中,则,故在上为增函数,故,故,故有两个不同的零点,即的解的个数为2.设,,当时,,当时,,故在上为减函数,在上为增函数,所以,而,,有两个不同的零点即的解的个数为2.当,由(1)讨论可得、仅有一个零点,当时,由(1)讨论可得、均无零点,故若存在直线与曲线、有三个不同的交点,则.设,其中,故,设,,则,故在上为增函数,故即,所以,所以在上为增函数,而,,故在上有且只有一个零点,且:当时,即即,当时,即即,因此若存在直线与曲线、有三个不同的交点,故,此时有两个不同的零点,此时有两个不同的零点,故,,,所以即即,故为方程的解,同理也为方程的解又可化为即即,故为方程的解,同理也为方程的解,所以,而,故即.压轴模拟专练1.(2022·河南郑州·三模)已知,,,则它们的大小关系正确的是(

)A. B. C. D.【答案】B【解析】由令,则,当,;当,;所以在上单调递增,在上单调递减,且则,因此,所以又因为,所以,得故,有.综上,.故选:B2.(2022·河南洛阳·三模)已知,,,则,,的大小关系为(

)A. B. C. D.【答案】D【解析】构造,,,在时为减函数,且,所以在恒成立,故在上单调递减,所以,即,所以,即.故选:D3.(2022·河南·高三模拟)在三棱锥中,是边长为的等边三角形,,二面角是150°,则三棱锥外接球的表面积是(

)A. B.C. D.【答案】A【解析】如图,作平面ABC,垂足为E,连接BE,记,连接PD.由题意可得D为AC的中点.在中,,D为AC的中点,因为,所以,则.因为二面角是150°,所以,所以,.因为是边长为的等边三角形,且D为AC的中点,所以.设为外接圆的圆心,则.设三棱锥外接球的球心为O,因为,所以O在平面ABC下方,连接,OB,OP,作,垂足为H,则,.设三棱锥外接球的半径为,,即,解得,故三棱锥外接球的表面积是.故选:A.4.(2022·山东菏泽高三模拟)已知正三棱锥的底面边长为,外接球表面积为,,点M,N分别是线段AB,AC的中点,点P,Q分别是线段SN和平面SCM上的动点,则的最小值为(

)A. B. C. D.【答案】B【解析】依题意,,解得,由是正三角形可知:其外接圆半径为,设点S到平面ABC的距离为h,故,解得或,则或(舍去),故,则,而,故为等腰直角三角形,,故为等腰直角三角形,,则,又,故平面SCM,取CB中点F,连接NF交CM于点O,则,则平面SCM,故平面SCM,则,要求最小,首先需PQ最小,此时可得平面SCM,则;再把平面SON绕SN旋转,与平面SNA共面,即图中位置,当共线且时,的最小值即为的长,由为等腰直角三角形,故,,∴,即,∴,可得,,故选:B.5.(2022·广东·深圳市光明区高级中学模拟预测)若图像上存在两点,关于原点对称,则点对称为函数的“友情点对”(点对与视为同一个“友情点对”).若,且,,,则(

)A.有无数个“友情点对” B.恰有个“友情点对”C. D.【答案】AD【解析】因为,,所以是奇函数,所以图像上存在无数对,关于原点对称,即有无数个“友情点对”;又因为,令,则,令,则,当时,,所以是增函数,,即,所以当时是增函数,,所以,在上是增函数,因为是奇函数,所以在上是增函数,因为,指数函数为增函数,所以,因为,指数函数为增函数,所以,由可得,故所以.故选:AD.6.(2022·山东潍坊·模拟预测)设是定义在R上的函数,若是奇函数,是偶函数,函数,则下列说法正确的是(

)A.当时,B.C.若,则实数m的最小值为D.若有三个零点,则实数【答案】BC【解析】因为是奇函数,是偶函数,所以,解得,由得,当时,,则,所以,同理,当时,,以此类推,可得到的图象如下图所示,对于A,根据上述规律,当时,,所以A错误,对于B,根据图象,刚好是相邻两个自然数中间的数,则刚好是每一段图象中的极大值,代入函数解析式得,所以B正确,对于C,根据图象,当时,,,由图可得C是正确的,对于D,有三个零点,等价于函数与函数有三个不同的交点,设,则函数的图象恒过点的直线,如图所示,当函数与的图象相切时,有三个交点,相切时斜率小于直线的斜率,直线的斜率为,所以有三个零点时,,所以D错误,故选:BC7.(2022·全国·高三专题练习)在棱长为6的正方体中,点是线段的中点,是正方形(包括边界)上运动,且满足,则点的轨迹周长为________.【答案】##【解析】如图,在棱长为6的正方体中,则平面,平面,又,在平面上,,,又,,,即,如图,在平面中,以为原点,分别为轴建立平面直角坐标系,则,,,由,知,化简整理得,,圆心,半径的圆,所以点的轨迹为圆与四边形的交点,即为图中的其中,,,则由弧长公式知故答案为:.8.已知椭圆C:的左,右焦点分别是是椭圆C上第一象限内的一点,且的周长为.过点作的切线,分别与轴和轴交于两点,为原点,当点在上移动时,面积的最小值为___________.【答案】2【解析】设直线方程为,因为的周长为,所以,且,所以,所以椭圆,联立可得,所以,所以,又因为与坐标轴交于,所以,取等号时,所以面积的最小值为,故答案为:.9.(2022·山西·太原五中二模)已知椭圆,过原点的两条直线和分别与椭圆交于和,记得到的平行四边形的面积为.(1)设,用的坐标表示点到直线的距离,并证明;(2)请从①②两个问题中任选一个作答①设与的斜率之积,求面积的值.②设与的斜率之积为.求的值,使得无论与如何变动,面积保持不变.【解析】(1)当时,直线的方程为:,则点到直线的距离为;当时,直线的方程为:,则点到直线的距离为,也满足,则点到直线的距离为;因为,则;(2)若选①,设,设,直线与椭圆联立可得,同理直线与椭圆联立可得,不妨令,则,,则;若选②,设,设,直线与椭圆联立可得,则,同理可得,则,两边平方整理得,由面积与无关,可得,解得,故时,无论与如何变动,面积保持不变.10.(2022·四川·树德中学模拟预测)在平面直角坐标系中,已知椭圆经过,椭圆的离心率为的.(1)求椭圆与椭圆的标准方程:(2)设过原点且斜率存在的直线l与椭圆相交于A,C两点,点P为椭圆的上顶点,直线PA与椭圆相交于点B,直线PC与椭圆相交于点D,设的面积分别为试问是否为定值,若是,求出该定值;若不是,请说明理由.【解析】(1)因为椭圆经过点,所以,①因为椭圆的离心率为.所以,即,②由①②可得,故椭圆的标准方程为,椭圆的标准方程为;(2)设,则,即由题意知,设直线的斜率分别为,则直线PA的方程为,则由,消去y得,解得或,则由,消去y得,解得或,所以点B的横坐标,所以

同理

所以故为定值11.(2022·浙江·高三模拟)已知函数.(1)若曲线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论