高中数学4(必修) 平面向量 向量的应用 向量在几何中的应用 课件_第1页
高中数学4(必修) 平面向量 向量的应用 向量在几何中的应用 课件_第2页
高中数学4(必修) 平面向量 向量的应用 向量在几何中的应用 课件_第3页
高中数学4(必修) 平面向量 向量的应用 向量在几何中的应用 课件_第4页
高中数学4(必修) 平面向量 向量的应用 向量在几何中的应用 课件_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普通高中课程标准数学4(必修)第二章平面向量2.4向量的应用2.4.1向量在几何中的应用1.向量在数学中的作用一、复习引入向量是数学中的一个重要概念之一,它具有几何与代数的双重属性。向量是从物理学和工程技术中抽象出来的,连同它的运算法则,性质都源于实践;反过来向量的理论和方法又为解决实际问题提供了有力工具,运用向量的方法可以解决一些平面几何,代数,三角,物理等问题。二、提出问题在学习向量及其运算时,我们已经看到向量加法运算与和全等、平行,数乘向量和相似,距离、夹角和向量的数量积之间的密切关系。今天我们再举一些例子,体会一下向量在数学中的应用。例1:如图,已知平行四边形ABCD中,E、F在对角线BD上,并且BE=FD,求证:AECF是平行四边形。三、概念形成概念1:向量在平面几何中的应用ABCDEF已知:如图,ABCD为平行四边形,求证:例2:求证平行四边形两条对角线的平方和等于两条相邻平方和的两倍。三、概念形成概念1:向量在几何中的应用ABCD例3:已知正方形ABCD,P为对角线AC上任意一点,于点E,于点F,连接DP,EF。求证:。三、概念形成概念1:向量在几何中的应用ABCDPEF练习1:已知平行四边形ABCD,M是BC中点,DM交AC于E,求四、应用举例练习2:已知M是正方形ABCD的边AB的中点,L分对角线AC的比为,求证。例1:求通过点,且平行于向量的直线方程。五、概念形成概念2:向量在解析几何中的应用(*)五、概念形成概念2:向量在解析几何中的应用(*)六、课堂练习课本第120页,练习A,1,2七、课堂总结(1)掌握平面向量数量积的坐标表示,即两个向量的数量积等于它们对应坐标的乘积之和;(2)要学会运用平面向量数量积的坐标表示解决有关长度、角度及垂直问题.八、布置作业课本第123页

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论