版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市第七中学2021-2022学年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线的焦点到准线的距离是(
)A.
B.
C.5
D.10参考答案:C2.命题:“若,则”的逆否命题是(
)A.若,则
B.若,则C.若,则
D.若,则参考答案:D略3.若直线ax+2y+6=0与直线x+a(a+1)y+a2-1=0垂直,则实数a的值为(
)A.- B.0 C.1 D.0或-参考答案:D4.若,则下列不等式:①|a|>|b|;②a+b>ab;③;④中.正确的不等式有()A.1个 B.2个 C.3个 D.4个参考答案:B【考点】不等关系与不等式.【分析】由已知:,可得b<a<0.进而得到|b|>|a|,a+b<0<ab,=2,(a﹣b)2>0,化为.即可判断出.【解答】解:∵,∴b<a<0.∴|b|>|a|,a+b<0<ab,=2,(a﹣b)2>0,化为.故正确的不等式为③④两个.故选B.5.设则“”是“”的()A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分也不必要条件参考答案:A6.椭圆=1的长轴为A1A2,短轴为B1B2,将椭圆沿y轴折成一个二面角,使得A1点在平面B1A2B2上的射影恰好为椭圆的右焦点,则该二面角的大小为()A.75° B.60° C.45° D.30°参考答案:B【考点】椭圆的应用;与二面角有关的立体几何综合题.【分析】连接A10根据椭圆的性质可知A10⊥y轴,A20⊥y轴,推断出∠A10A2为所求的二面角,利用椭圆的方程求得a和c,即|A10|和|0F|的值,进而在Rt△A10A2中利用求得cos∠A10A2进而求得∠A10A2.【解答】解:连接A10∵A10⊥y轴,A20⊥y轴,∴∠A10A2为两个面的二面角.|A10|=a=4,|0F|=c==2,∴cos∠A10A2==∴∠A10A2=60°,故选B7.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值()A.2个 B.1个 C.3个 D.4个参考答案:B【考点】利用导数研究函数的极值.【分析】如图所示,由导函数f′(x)在(a,b)内的图象和极值的定义可知:函数f(x)只有在点B处取得极小值.【解答】解:如图所示,由导函数f′(x)在(a,b)内的图象可知:函数f(x)只有在点B处取得极小值,∵在点B的左侧f′(x)<0,右侧f′(x)>0,且f′(xB)=0.∴函数f(x)在点B处取得极小值.故选:B.8.设函数,则下列说法正确的是A.f(x)定义域是(0,+∞)B.x∈(0,1)时,f(x)图象位于x轴下方C.f(x)存在单调递增区间D.f(x)有且仅有两个极值点E.f(x)在区间(1,2)上有最大值参考答案:BC【分析】利用函数的解析式有意义求得函数的定义域,再利用导数求解函数的单调区间和极值、最值,逐项判定,即可求解,得到答案.【详解】由题意,函数满足,解得且,所以函数的定义域为,所以A不正确;由,当时,,∴,所以在上的图象都在轴的下方,所以B正确;所以在定义域上有解,所以函数存在单调递增区间,所以C是正确的;由,则,所以,函数单调增,则函数只有一个根,使得,当时,,函数单调递减,当时,函数单调递增,所以函数只有一个极小值,所以D不正确;由,则,所以,函数单调增,且,,所以函数在先减后增,没有最大值,所以E不正确,故选BC.【点睛】本题主要考查了函数的定义域的求解,以及利用导数研究函数的单调性与极值、最值问题,其中解答中准确求解函数的导数,熟记函数的导数与原函数的关系是解答的关键,着重考查了推理与运算能力,属于基础题.9.有两排座位,前排11个座位,后排12个座位,现安排2人就坐,规定前排中间的3个座位不能坐,并且这两人不左右相邻,那么不同的排法种数是()
A.234B.346C.350D.363参考答案:B略10..参数方程(t为参数)所表示的曲线是()A. B.C. D.参考答案:D分析:由x的解析式可知x的取值范围,由x、y解析式的特征可知x、y的符号关系,从而确定图像所在象限,通过图像特点确定函数图像.详解:因为,所以,即可排除B、C选项,因为,所以当时,符号与x相同,所以函数图像应大致分布在第一象限和第三象限,故选D.点睛:本题考查参数方程的转化,但转化时要注意参数对变量x、y取值范围的影响,要把曲线中取不到的部分删除,有时只需要求出变量的符号等关系即可选出图像.二、填空题:本大题共7小题,每小题4分,共28分11.某地区为了解70岁~80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:序号i分组
(睡眠时间)组中值(Gi)频数(人数)频率(Fi)
14,5)4.560.1225,6)5.5100.2036,7)6.5200.4047,8)7.5100.2058,98.540.08在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为________.参考答案:6.42
12.在平面直角坐标系中,若圆上存在,两点关于点成中心对称,则直线的方程为
.参考答案:x+y—3=013.某高中共有4500人,其中高一年级1200人,高二年级1500人,高三年级1800人,现采取分层抽样的方法抽取容量为600的样本,则高二年级抽取的人数为
.参考答案:20014.在平面内,三角形的面积为S,周长为C,则它的内切圆的半径.在空间中,三棱锥的体积为V,表面积为S,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=__________.参考答案:试题分析:若三棱锥表面积为S,体积为V,则其内切球半径”证明如下:设三棱锥的四个面积分别为:,由于内切球到各面的距离等于内切球的半径∴∴内切球半径考点:类比推理15.若命题P:“”,则命题P的否定:
▲
.参考答案:,
16.等差数列中,若,则的值为
.参考答案:17.已知随机变量X服从二项分布X~,那么方差的值为
.参考答案:∵随机变量X服从二项分布,那么,即.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.从参加高二年级期中考试的学生中随机抽取60名学生,将其英语成绩分成六段[40,50),[50,60),…,[90,100)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)根据补充完整频率分布直方图估计出本次考试的平均分数、中位数;(小数点后保留一位有效数字)(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?参考答案:【考点】频率分布直方图;分层抽样方法.【分析】(1)计算分数在[70,80)内的频率,利用求出小矩形的高,补出图形即可;(2)根据频率分布直方图,计算平均分与中位数即可;(3)根据分层抽样原理,计算各分数段内应抽取的人数即可.【解答】解:(1)分数在[70,80)内的频率为1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3.又=0.03,补出的图形如下图所示;(2)根据频率分布直方图,计算平均分为:=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,估计这次考试的平均分是71;又0.01×10+0.015×10+0.015×10=0.4<0.5,0.4+0.03×10=0.7>0.5,∴中位数在[70,80)内,计算中位数为70+≈73.3;(3)根据分层抽样原理,[40,50)分数段应抽取人数为0.10×20=2人;[50,60)分数段应抽取人数为0.15×20=3人;[60,70)分数段应抽取人数为0.15×20=3人;[70,80)分数段应抽取人数为0.3×20=6人;[80,90)分数段应抽取人数为0.25×20=5人;[90,100]分数段应抽取人数为0.05×20=1人.19.(本题满分12分)设函数,曲线过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)证明:参考答案:(1)
由已知条件得,解得
(2),由(1)知设则g/(x)=-1-2x+=-而20.已知{an}是一个等差数列且a2+a8=﹣4,a6=2 (1)求{an}的通项公式; (2)求{an}的前n项和Sn的最小值. 参考答案:【考点】等差数列的前n项和;等差数列的通项公式. 【专题】等差数列与等比数列. 【分析】(1)设等差数列{an}的公差为d,由a2+a8=﹣4,a6=2,利用通项公式可得,解得即可. (2)令an≥0,即4n﹣22≥0,解得n≥6,可知当n=5时,Sn取得最小值,利用前n项和公式即可得出. 【解答】解:(1)设等差数列{an}的公差为d. ∵a2+a8=﹣4,a6=2,∴,解得, ∴an=a1+(n﹣1)d=﹣18+4(n﹣1)=4n﹣22. (2)令an≥0,即4n﹣22≥0,解得n≥6, 可知当n=5时,Sn取得最小值,=﹣50. 【点评】本题考查了等差数列的通项公式性质及其前n项和公式等基础知识与基本技能方法,属于基础题. 21.某投资商到一开发区投资万元建起了一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加万元,从第一年起每年蔬菜销售收入万元.设表示前年的纯利润总和,(=前年的总收入–前年的总支出–投资额万元).(I)该厂从第几年开始盈利?(II)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.参考答案:解:由题意知.(I)由由知,从第三年开始盈利.(II)年平均纯利润当且仅当n=6时等号成立.年平均纯利润最大值为16万元,即第6年,投资商年平均纯利润达到最大,年平均纯利润最大值16万元.略22.如图,点是椭圆:的左焦点,、分别是椭圆的右顶点与上顶点,椭圆的离心率为,三角形的面积为,(Ⅰ)求椭圆的方程;(Ⅱ)对于轴上的点,椭圆上存在点,使得,求实数的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB12T 630.5-2021 天津质量奖 第5部分:服务业评价规范
- DB12T 575-2015 农业资源与环境编码规则 第1部分:涉农基地
- 2024年电商店铺代运营服务与技术支持合作协议3篇
- 2024年电子商务平台入驻门头合作协议范本3篇
- 2025学校食品原料供货合同
- 2024信用证项下出口退税融资合同范本3篇
- 2024年环保型打印耗材定点供应商合作协议范本3篇
- 2025表达车位转让合同
- 2024年中心门面房屋租赁及新能源设施安装合同3篇
- 维修价格与满意度关系分析-洞察分析
- LPG液化气充装站介质分析操作规程 202412
- 2023-2024学年广东省深圳市龙华区六年级上学期期末英语试卷
- 2024年注册会计师审计考试题及答案
- 药学专业论文3000字药学毕业论文(6篇)
- 光伏发电工程施工技术方案
- 一年级看图写话集锦省公开课获奖课件说课比赛一等奖课件
- 化疗后胃肠道反应护理
- 天津市武清区2024-2025学年九年级上学期11月期中物理试题(无答案)
- 山西省2024-2025学年九年级上学期11月期中考试化学试题
- 商业街招商运营年终总结
- 2023届安徽省马鞍山市高三第一次教学质量监测(一模)理综生物试题(原卷版)
评论
0/150
提交评论