人教版七年级数学上册《1.3有理数的加减法》培优练习_第1页
人教版七年级数学上册《1.3有理数的加减法》培优练习_第2页
人教版七年级数学上册《1.3有理数的加减法》培优练习_第3页
人教版七年级数学上册《1.3有理数的加减法》培优练习_第4页
人教版七年级数学上册《1.3有理数的加减法》培优练习_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(基础版)2021年人教版七年级数学上册《1.3有理数的加减法》培优同步练习一.选择题(共12小题)1.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13 B.13 C.﹣3 D.32.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,则下列结论中正确的是()A.[2)﹣2=0 B.若[m)﹣m=0.5,则m=0.5 C.[m)﹣m的最大值是1 D.[m)﹣m的最小值是03.某地一周内每天的最高气温与最低气温记录如表,其中温差是12℃的共有()星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃﹣1℃﹣4℃﹣5℃﹣5℃A.1天 B.2天 C.3天 D.4天4.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7 B.3或﹣3 C.3 D.7或35.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成1,1=10﹣2;189写成29=200﹣20+9;7683写成13=10000﹣2320+3.按这个方法请计算52﹣31=()A.2408 B.1990 C.2410 D.30246.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20 B.60 C.10 D.707.若|x|=2,|y|=3,且xy异号,则|x+y|的值为()A.5 B.5或1 C.1 D.1或﹣18.如图,将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a﹣b+c的值为()A.﹣5 B.﹣4 C.0 D.59.运用加法的运算律计算(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)最适当的是()A.[(+6)+(+4)+18]+[(﹣18)+(﹣6.8)+(﹣3.2)] B.[(+6)+(﹣6.8)+(+4)]+[(﹣18)+18+(﹣3.2)] C.[(+6)+(﹣18)]+[(+4)+(﹣6.8)]+[18+(﹣3.2)] D.[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)]10.计算:﹣1﹣3=()A.2 B.﹣2 C.4 D.﹣411.已知|x|=4,|y|=5,且x>y,则x+y的值为()A.﹣1或﹣9 B.+1或﹣9 C.﹣9 D.﹣112.现有a,b,c,d四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等 B.有且只有两个数相等 C.有且只有三个数相等 D.全部相等二.填空题(共9小题)13.如果A、B两地的高度分别为海拔70米、海拔﹣210米,那么A地比B地高米.14.标有1﹣25号的25个座位如图摆放.甲、乙、丙、丁四人玩选座位游戏,甲选2个座位,乙选3个座位,丙选4个座位,丁选5个座位.游戏规则如下:①每人只能选择同一横行或同一竖列的座位;②每人使自己所选的座位号数字之和最小;③座位不能重复选择.如果按“甲、乙、丙、丁”的先后顺序选座位,那么甲选1,2号座位,乙选3,4,5号座位,丙选7,8,9,10号座位,丁选13,14,15,16,17号座位,此时四人所选的座位号数字之和为124.如果按“丁、丙、乙、甲”的先后顺序选座位,那么四人所选的座位号数字之和为.15.2021年1月8日我市气温达到入冬以来的最低气温:﹣9℃~﹣3℃,这天的温差是℃.16.(多选)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,b+c>0,则下列结论一定正确的是.A.b<0;B.|b|<|c|;C.|a|>|b|;D.abc<0.17.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.18.如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为.19.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y=.20.计算:=.21.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5168421.如果自然数m经过7步运算可得到1,则所有符合条件的m的值为.三.解答题(共8小题)22.计算:.23.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).24.“疫情无情人有情”.在抗击新冠病毒疫情期间,一志愿小组某天早晨从A地出发沿南北方向运送抗疫物资,晚上最后到达B地.约定向北为正方向,当天志愿小组行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣6,+13,﹣6,﹣8,﹣27.(1)试问B地在A地的哪个方向,它们相距多少千米?(2)若汽车行驶每千米耗油0.07升,则志愿小组该天共耗油多少升?25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?26.某公司上半年每个月的盈亏情况如下表(盈余为正,单位:万元):月份1月2月3月4月5月6月盈亏(万元)+20+30﹣40﹣20+50+10(1)该公司收入最高的月份比最低的月份多多少万元?(2)该公司上半年是盈还是亏?盈亏是多少?27.根据市场情况,某公司决定用一周时间大量收购小麦.计划收购48000千克,公司将工作人员分为6个收购小组,每组收购任务是8000千克.一周后,6个小组完成的情况分别为:8200千克,7800千克,9000千克,7200千克,8200千克,8000千克.(1)通过计算说明6个小组完成的总数量是否达到计划数量?(2)若每小组一周后均各奖500元,超额完成的每100千克再奖10元,少完成每100千克从奖金中扣8元,本次收购后,该公司要支付多少奖金?28.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.29.【提出问题】两个有理数a,b满足a,b同号,求的值.【解决问题】解:由a,b同号可知a,b有以下两种可能:a,b都是正数;a,b都是负数.①若a,b都是正数,即a>0,b>0,有|a|=a,|b|=b,则=1+1=2;②若a,b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则=(﹣1)+(﹣1)=﹣2.综上,的值为2或﹣2.【探究问题】请根据上面的解题思路解答下面的问题:(1)两个有理数a,b满足a,b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.

(基础版)2021年人教版七年级数学上册《1.3有理数的加减法》培优同步练习参考答案与试题解析一.选择题(共12小题)1.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13 B.13 C.﹣3 D.3【分析】根据有理数减法法则,求出计算(﹣5)﹣(﹣8)的结果等于多少即可.【解答】解:(﹣5)﹣(﹣8)=(﹣5)+8=3.故选:D.【点评】此题主要考查了有理数的减法的运算方法,解答此题的关键是要明确有理数减法法则:减去一个数,等于加上这个数的相反数.2.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,则下列结论中正确的是()A.[2)﹣2=0 B.若[m)﹣m=0.5,则m=0.5 C.[m)﹣m的最大值是1 D.[m)﹣m的最小值是0【分析】根据题意[m)表示大于m的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[2)﹣2=3﹣2=1,故本选项不合题意;B、若[m)﹣m=0.5,则m不一定等于0.5,故本选项不合题意;C、[m)﹣m的最大值是1,故本项符合题意;D、[m)﹣m>0,但是取不到0,故本选项不合题意;故选:C.【点评】此题主要考查了有理数的减法,仔细审题,理解[m)表示大于m的最小整数是解答本题的关键.3.某地一周内每天的最高气温与最低气温记录如表,其中温差是12℃的共有()星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃﹣1℃﹣4℃﹣5℃﹣5℃A.1天 B.2天 C.3天 D.4天【分析】求出一周内每天的温差,找出温差为12℃的个数即可.【解答】解:根据表格得:10﹣2=8;12﹣1=11;11﹣0=11;9﹣(﹣1)=10;7﹣(﹣4)=11;5﹣(﹣5)=10;7﹣(﹣5)=12,则温差是12℃的共有1天.故选:A.【点评】此题考查了有理数的减法,以及正数与负数,熟练掌握减法法则是解本题的关键.4.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7 B.3或﹣3 C.3 D.7或3【分析】先根据绝对值的性质得出m=±5,n=±2,再结合m、n异号知m=5、n=﹣2或m=﹣5、n=2,继而分别代入计算可得答案.【解答】解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.【点评】本题主要考查有理数的减法和绝对值,解题的关键是掌握根据绝对值的性质和有理数的乘方确定m、n的值.5.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成1,1=10﹣2;189写成29=200﹣20+9;7683写成13=10000﹣2320+3.按这个方法请计算52﹣31=()A.2408 B.1990 C.2410 D.3024【分析】根据“加减计数法”的意义,将52﹣31转化为(5200﹣31)﹣(3000﹣240+1)进行计算即可.【解答】解:根据“加减计数法”的意义可得,52﹣31=(5200﹣31)﹣(3000﹣240+1)=5200﹣31﹣3000+240﹣1=2408,故选:A.【点评】本题考查有理数的加减混合运算,理解“加减计数法”的意义是正确计算的关键.6.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20 B.60 C.10 D.70【分析】首先用35减去10,求出x的值是多少;然后再求出35和x相加得到的和是多少即可.【解答】解:35+(35﹣10)=35+25=60.故选:B.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是求出x的值是多少.7.若|x|=2,|y|=3,且xy异号,则|x+y|的值为()A.5 B.5或1 C.1 D.1或﹣1【分析】利用绝对值的代数意义求出x与y的值,代入原式计算即可求出值.【解答】解:∵|x|=2,|y|=3.且xy异号,∴x=2,y=﹣3;x=﹣2,y=3,∴x+y=﹣1或1,则|x+y|=1.故选:C.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.如图,将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a﹣b+c的值为()A.﹣5 B.﹣4 C.0 D.5【分析】(1)首先根据第3行和第1列的三个数之和相等,求出c的值是多少;然后根据第1行和第3列的三个数之和相等,求出a的值是多少;最后根据第1行和对角线上的三个数之和相等,求出b的值是多少;再根据有理数加减法的运算方法,求出a﹣b+c的值是多少即可.(2)先由第二行得三数之和均为﹣1+1+3=3,然后利用减法分别求出a,b,c的值,进而求出a﹣b+c的值为多少即可.【解答】解:(1)解法一:c=4+(﹣1)﹣5=﹣2,a=3+(﹣2)﹣4=﹣3,b=4+(﹣3)+2﹣1﹣2=0,∴a﹣b+c=﹣3﹣0+(﹣2)=﹣5.(2)解法二:三数之和均为:﹣1+1+3=3,∴a=3﹣(4+2)=3﹣6=﹣3,b=3﹣[4+(﹣1)]=3﹣3=0,c=3﹣(2+3)=3﹣5=﹣2,∴a﹣b+c=﹣3﹣0+(﹣2)=﹣5.故选:A.【点评】此题主要考查了有理数的加减法的运算方法,要熟练掌握,解答此题的关键是求出a、b、c的值各是多少.9.运用加法的运算律计算(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)最适当的是()A.[(+6)+(+4)+18]+[(﹣18)+(﹣6.8)+(﹣3.2)] B.[(+6)+(﹣6.8)+(+4)]+[(﹣18)+18+(﹣3.2)] C.[(+6)+(﹣18)]+[(+4)+(﹣6.8)]+[18+(﹣3.2)] D.[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)]【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【解答】解:(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)=[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)];故选:D.【点评】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.10.计算:﹣1﹣3=()A.2 B.﹣2 C.4 D.﹣4【分析】根据有理数的加减法法则计算即可判断.【解答】解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.【点评】本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.11.已知|x|=4,|y|=5,且x>y,则x+y的值为()A.﹣1或﹣9 B.+1或﹣9 C.﹣9 D.﹣1【分析】因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=﹣5或x=﹣4,y=﹣5.然后分两种情况分别计算x+y的值.【解答】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=﹣5或x=﹣4,y=﹣5.4+(﹣5)=﹣1,﹣4+(﹣5)=﹣9,所以x+y=﹣1或﹣9.故选:A.【点评】本题主要考查了绝对值的定义,有理数的加法法则,体现了分类讨论的数学思想,解题时主要分类要不重不漏.12.现有a,b,c,d四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等 B.有且只有两个数相等 C.有且只有三个数相等 D.全部相等【分析】设a≤b≤c≤d,得到a+b=6,c+d=9,分别求得a,b,c,d的值,即可判断求解.【解答】解:∵正整数a,b,c,d具有同等不确定性,∴设a≤b≤c≤d,∴a+b=6,c+d=9,当a=1时,得b=5,∴c,d为5或6不合题意,舍去,∴a≠1;当a=2时,得b=4,∴c,d为4或5,符合题意了,∴a≠2;当a=3时,得b=3,∴c=4,d=5,符合题意了.综上所述,a,b,c,d这四个正整数只能是2,4,4,5和3,3,4,5.故选:B.【点评】本题主要考查了有理数的加法,属于以代数为背景的推理与论证.二.填空题(共9小题)13.如果A、B两地的高度分别为海拔70米、海拔﹣210米,那么A地比B地高280米.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:70﹣(﹣210)=70+210=280,则A地比B地高280米,故答案为:280.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.标有1﹣25号的25个座位如图摆放.甲、乙、丙、丁四人玩选座位游戏,甲选2个座位,乙选3个座位,丙选4个座位,丁选5个座位.游戏规则如下:①每人只能选择同一横行或同一竖列的座位;②每人使自己所选的座位号数字之和最小;③座位不能重复选择.如果按“甲、乙、丙、丁”的先后顺序选座位,那么甲选1,2号座位,乙选3,4,5号座位,丙选7,8,9,10号座位,丁选13,14,15,16,17号座位,此时四人所选的座位号数字之和为124.如果按“丁、丙、乙、甲”的先后顺序选座位,那么四人所选的座位号数字之和为114.【分析】根据游戏规则,按“同一竖列”或“同一横行”,分别得出丁、丙、乙、甲所选的数,再把它们相加即可.【解答】解:①利用选择“同一竖列”的原则,可得丁选择了:28、8、1、4、5、15;丙选择了:9、2、3、14;乙选择了:7、6、5;甲选择了:10、11;故四人所选的座位号数字之和为:28+8+1+4+5+15+9+2+3+14+7+6+5+10+11=118.②利用选择“同一横行”的原则,可得丁选择了:19、6、1、2、11;丙选择了:5、4、3、12;乙选择了:7、8、9;甲选择了:14、13;故四人所选的座位号数字之和为:19+6+1+2+11+5+4+3+12+7+8+9+14+13=114.故答案为:114.【点评】本题主要考查了有理数的加法,理清游戏规则是解答本题的关键.15.2021年1月8日我市气温达到入冬以来的最低气温:﹣9℃~﹣3℃,这天的温差是6℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:由题意可得:﹣3﹣(﹣9),=﹣3+9,=6(℃).故答案为:6.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.16.(多选)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,b+c>0,则下列结论一定正确的是B和C.A.b<0;B.|b|<|c|;C.|a|>|b|;D.abc<0.【分析】根据已知分析a、b、c的符号和绝对值再判断.【解答】解:∵ac<0,∴a、c异号,∵c在a右边,∴a<0,c>0,∵b+a<0,∴若b>0,b+a取a的符号,有|a|>|b|,若b<0,则原点在b右侧,而a在b左侧,有|a|>|b|,∴C正确;∵b+c>0,∴若b>0,则原点在b左侧,而c在b右侧,有|b|<|c|,若b<0,b+c取c得符号则|b|<|c|,∴B正确;而从已知不能得到b<0、abc<0,故答案为:B和C.【点评】本题考查有理数加法法则,关键是要理解掌握和的符号与加数符号的关系.17.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为1344.【分析】根据任意三个相邻格子中所填整数之和都相等,可得出x、y、z所表示的数,进而得出这一列数,再求和即可.【解答】解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.【点评】本题考查有理数的加法,得出这列数据的排列规律是正确解答的关键.18.如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为3.【分析】首先根据题意,可得:4x+(x+7)=x+19;然后根据解一元一次方程的方法,求出x的值为多少即可.【解答】解:根据题意,可得:4x+(x+7)=x+19,去括号,可得:4x+x+7=x+19,移项,可得:4x+x﹣x=19﹣7,合并同类项,可得:4x=12,系数化为1,可得:x=3.故答案为:3.【点评】此题主要考查了有理数的加法,以及解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y=﹣5或﹣1.【分析】根据绝对值的性质和有理数的乘方求出x、y,再根据负数的绝对值等于它的相反数判断出x﹣y<0,然后求解即可.【解答】解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故答案为:﹣5或﹣1.【点评】本题考查了有理数的减法,绝对值的性质,有理数的乘方,熟记运算法则和性质是解题的关键.20.计算:=.【分析】根据有理数的减法法则计算即可.【解答】解:=﹣5=﹣2.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.21.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5168421.如果自然数m经过7步运算可得到1,则所有符合条件的m的值为128或21或20或3.【分析】根据m为奇数和偶数分别进行解答即可.【解答】解:如图,偶数64=3×21+1,16=3×5+1,(1)得数为64之前输入的数为偶数时,则m=64×2=128,得数为64之前输入的数为奇数时,则3m+1=64,即m=21,(2)当得数为16之前输入的数为奇数时,如图,则第一次计算的结果为10,于是,m=10×2=20,或3m+1=10,即m=3,综上所述m的值为128,21,20,3;故答案为:128或21或20或3.【点评】本题考查有理数的运算,掌握运算结果的奇偶性以及每次运算结果的规律性是正确解答的关键.三.解答题(共8小题)22.计算:.【分析】根据有理数的运算顺序计算即可.【解答】解:原式=3.73﹣2+(﹣2.63)﹣=1.1﹣3=﹣1.9.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.23.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).【分析】(1)利用加法的结合律和交换律,把互为相反数结合,正负数分别结合,然后进行计算即可;(2)利用加法的结合律和交换律,把同分母的结合在一起,然后计算即可.【解答】解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.“疫情无情人有情”.在抗击新冠病毒疫情期间,一志愿小组某天早晨从A地出发沿南北方向运送抗疫物资,晚上最后到达B地.约定向北为正方向,当天志愿小组行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣6,+13,﹣6,﹣8,﹣27.(1)试问B地在A地的哪个方向,它们相距多少千米?(2)若汽车行驶每千米耗油0.07升,则志愿小组该天共耗油多少升?【分析】(1)首先根据有理数的加减混合运算,把当天的行驶记录相加;然后根据正、负数的意义,判断出B地在A地的哪个方向,它们相距多少千米即可.(2)首先求出当天行驶记录的绝对值的和,再用汽车汽车行驶的路程乘以行驶每千米耗油量,求出该天共耗油多少升即可.【解答】解:(1)+18﹣9+7﹣14﹣6+13﹣6﹣8﹣27=18+7+13﹣9﹣14﹣6﹣6﹣8﹣27=38﹣70=﹣32,∴B地在A地的南方,它们相距32千米.(2)(|+18|+|﹣9|+|+7|+|﹣14|+|﹣6|+|+13|+|﹣6|+|﹣8|+|﹣27|)×0.07=(18+9+7+14+6+13+6+8+27)×0.07=108×0.07=7.56(升),∴汽车行驶每千米耗油0.07升,则志愿小组该天共耗油7.56升.【点评】本题主要考查有理数的加减混合运算,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?【分析】(1)用最大数减去最小数即可求解;(2)求出这七天的跑步时间,再乘速度即可求解.【解答】解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.【点评】本题主要考查有理数的加减混合运算,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.某公司上半年每个月的盈亏情况如下表(盈余为正,单位:万元):月份1月2月3月4月5月6月盈亏(万元)+20+30﹣40﹣20+50+10(1)该公司收入最高的月份比最低的月份多多少万元?(2)该公司上半年是盈还是亏?盈亏是多少?【分析】(1)用最大的数减去最小的数即可;(2)把6个数相加即可求解.【解答】解:(1)+50﹣(﹣40)=50+40=90(万元),答:该公司收入最高的月份比最低的月份多90万元;(2)+20+(+30)+(﹣40)+(﹣20)+(+50)+(+10)=50(万元),答:该公司上半年盈利50万元.【点评】本题主要考查正数与负数,有理数的加减混合运算,读懂题意是解题的关键.27.根据市场情况,某公司决定用一周时间大量收购小麦.计划收购48000千克,公司将工作人员分为6个收购小组,每组收购任务是8000千克.一周后,6个小组完成的情况分别为:8200千克,7800千克,9000千克,7200千克,8200千克,8000千克.(1)通过计算说明6个小组完成的总数量是否达到计划数量?(2)若每小组一周后均各奖500元,超额完成的每100千克再奖10元,少完成每100千克从奖金中扣8元,本次收购后,该公司要支付多少奖金?【分析】(1)根据以8000kg为标准,超过标准记为正,低于标准记为负,可得每组的完成情况,根据有理数的加法,可得答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论