2022年湖北省恩施土家族苗族自治州文斗民族初级中学数学九年级第一学期期末达标测试试题含解析_第1页
2022年湖北省恩施土家族苗族自治州文斗民族初级中学数学九年级第一学期期末达标测试试题含解析_第2页
2022年湖北省恩施土家族苗族自治州文斗民族初级中学数学九年级第一学期期末达标测试试题含解析_第3页
2022年湖北省恩施土家族苗族自治州文斗民族初级中学数学九年级第一学期期末达标测试试题含解析_第4页
2022年湖北省恩施土家族苗族自治州文斗民族初级中学数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,弦相交于点,连接,若,,则()A. B. C. D.2.已知关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是().A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠03.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40° B.140° C.70° D.80°4.已知反比例函数y=kx的图象经过点P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)5.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B. C. D.6.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是()A.向左平移4个单位 B.向右平移4个单位C.向上平移1个单位 D.向下平移1个单位7.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7) B.(2,7) C.(2,﹣9) D.(﹣2,﹣9)8.如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是()A.①②③ B.②③④ C.①③④ D.①②③④9.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.10.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为()A.5 B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是_______.12.若m+n=3,则2m2+4mn+2n2-6的值为________.13.数据﹣3,6,0,5的极差为_____.14.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是______.15.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.16.如图,在直角三角形中,是斜边上的高,,则的值为___.17.如图所示,等腰三角形,,,…,(为正整数)的一直角边在轴上,双曲线经过所有三角形的斜边中点,,,…,,已知斜边,则点的坐标为_________.18.如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则cosα=_____.三、解答题(共66分)19.(10分)一张长为30cm,宽20cm的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm2,求剪掉的正方形纸片的边长.20.(6分)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.21.(6分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.22.(8分)如图,已知直线的函数表达式为,它与轴、轴的交点分别为两点.(1)若的半径为2,说明直线与的位置关系;(2)若的半径为2,经过点且与轴相切于点,求圆心的坐标;(3)若的内切圆圆心是点,外接圆圆心是点,请直接写出的长度.23.(8分)(1)计算:2sin30°+cos30°•tan60°.(2)已知,且a+b=20,求a,b的值.24.(8分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1、2、3、4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于5的概率(请用画树状图或列表等方法求解).25.(10分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结.点为抛物线上上方的一个点,连结,作垂足为,交于点.(1)求的长;(2)当时,求点的坐标;(3)当面积是四边形面积的2倍时,求点的坐标.26.(10分)(1)计算:tan31°sin61°+cos231°-tan45°(2)解方程:x2﹣2x﹣1=1.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可.【详解】解:∵,,∴又∵,,,故选:.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.2、C【解析】分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2-2x+1=1有实数根,则△=b2-4ac≥1.详解:∵a=k,b=-2,c=1,∴△=b2-4ac=(-2)2-4×k×1=4-4k≥1,k≤1,∵k是二次项系数不能为1,k≠1,即k≤1且k≠1.故选C.点睛:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3、C【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【详解】∵PA是圆的切线,∴同理根据四边形内角和定理可得:∴故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.4、C【解析】先根据点(-2,3),在反比例函数y=k的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【详解】∵反比例函数y=kx的图象经过点(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此点不在反比例函数图象上;B.∵1×6=6≠-6,∴此点不在反比例函数图象上;C.∵3×(-2)=-6,∴此点在反比例函数图象上;D.∵3×2=6≠-6,∴此点不在反比例函数图象上。故答案选:C.【点睛】本题考查的知识点是反比例函数图像上点的坐标特点,解题的关键是熟练的掌握反比例函数图像上点的坐标特点.5、B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.6、B【分析】抛物线y=2(x+4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y轴上,则原抛物线向右平移4个单位即可.【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向右平移4个单位即可.故选:B.【点睛】此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案.7、B【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的顶点坐标.【详解】∵抛物线y=﹣x2+4x+3=﹣(x﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B.【点睛】本题考查二次函数的顶点式,解答本题的关键是明确题意,利用二次函数的性质解答.8、B【分析】①由于与不一定相等,根据圆周角定理可判断①;

②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;

③先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;

④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;【详解】解:①错误,假设,则,,,显然不可能,故①错误.②正确.连接.是切线,,,,,,,,,故②正确.③正确.,,,,,,是直径,,,,,,,点是的外心.故③正确.④正确.连接.,,,,,,,,可得,,,,可得,.故④正确,故选:.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.9、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.10、C【分析】连接BE,设⊙O的半径为r,然后由垂径定理和勾股定理列方程求出半径r,最后由勾股定理依次求BE和EC的长即可.【详解】解:如图:连接BE设⊙O的半径为r,则OA=OD=r,OC=r-2∵OD⊥AB,∴∠ACO=90°∴AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE为⊙O的直径∴∠ABE=90°由勾股定理得:BE==6在Rt△ECB中,EC=.故答案为C.【点睛】本题主要考查了垂径定理和勾股定理,根据题意正确作出辅助线、构造出直角三角形并利用勾股定理求解是解答本题的关键.二、填空题(每小题3分,共24分)11、(0,1)【解析】利用旋转的性质,旋转中心在各对应点的连线段的垂直平分线上,则作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1)即为旋转中心.【详解】解:作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1),如图,

所以△DEF是由△ABC绕着点P逆时针旋转90°得到的.故答案为(0,1).【点睛】本题考查坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是利用旋转的性质确定旋转中心.12、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.13、1【分析】根据极差的定义直接得出结论.【详解】∵数据﹣3,6,0,5的最大值为6,最小值为﹣3,∴数据﹣3,6,0,5的极差为6﹣(﹣3)=1,故答案为1.【点睛】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.14、(3,0)【分析】把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.【详解】把点(1,0)代入抛物线y=x2-4x+中,得m=6,所以,原方程为y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为(3,0).【点睛】本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.15、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【点睛】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.16、【分析】证明,从而求出CD的长度,再求出即可.【详解】∵是斜边上的高∴∵∴∴∴解得(舍去)∴在中故答案为:.【点睛】本题考查了相似三角形的判定以及三角函数,掌握相似三角形的性质以及判定是解题的关键.17、【分析】先求出双曲线的解析式,设=2,=2,分别求出和的值,从中找到规律表示出的值,据此可求得点的坐标.【详解】解:∵,是等腰三角形,∴==4,∴的坐标是(-4,4),∴的坐标是(-2,2),∴双曲线解析式为,设=2,则=2,∴的坐标是(-4-2,2),∴的坐标是(-4-,),∴(-4-)=-4,∴=(负值舍去),∴=,设=2,则=2,同理可求得=,∴=,……,依此类推=,∴==,∴=+++……+=4+++……+=∴的坐标是(,),故答案是:(,).【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.18、【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求cosα的值.【详解】∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC−60=0,解得AC=5,AC=−12(舍去),∴BC==12,∴cosα==故填:.【点睛】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.三、解答题(共66分)19、4cm【解析】试题分析:设剪掉的正方形纸片的边长为xcm,则围成的长方体纸盒的底面长是(32-2x)cm,宽是(32-2x)cm,根据底面积等于1cm2列方程求解.解:设剪掉的正方形纸片的边长为xcm.由题意,得(32-2x)(22-2x)=1.整理,得x2-25x+84=2.解方程,得,(不符合题意,舍去).答:剪掉的正方形的边长为4cm.20、(1)b=2,c=3,y=-x+2x+3;(2)【分析】(1)把抛物线上的两点代入解析式,解方程组可求b、c的值;(2)令y=1,求抛物线与x轴的两交点坐标,观察图象,求y>1时,x的取值范围.【详解】解:(1)将点(-1,1),(1,3)代入y=-x2+bx+c中,得解得.∴(2)当y=1时,解方程,得,又∵抛物线开口向下,∴当-1<x<3时,y>1.【点睛】本题考查了待定系数法求抛物线解析式,根据抛物线与x轴的交点,开口方向,可求y>1时,自变量x的取值范围.21、(1)2(2)8【解析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN的面积.【详解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面积为36,点M为BC的中点∴△ABM的面积为:36÷2=18∵△ADN和△ABM的相似比为∴∴=8考点:相似三角形的判定与性质22、(1)直线AB与⊙O的位置关系是相离;(2)(,2)或(-,2);(3)【分析】(1)由直线解析式求出A(-4,0),B(0,3),得出OB=3,OA=4,由勾股定理得出AB==5,过点O作OC⊥AB于C,由三角函数定义求出OC=>2,即可得出结论;(2)分两种情况:①当点P在第一象限,连接PB、PF,作PC⊥OB于C,则四边形OCPF是矩形,得出OC=PF=BP=2,BC=OB-OC=1,由勾股定理得出PC=,即可得出答案;②当点P在的第二象限,根据对称性可得出此时点P的坐标;(3)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,则四边形OCMD是正方形,DE⊥AB,BE=BD,得出MC=MD=ME=OD=(OA+OB-AB)=1,求出BE=BD=OB-OD=2,由直角三角形的性质得出△ABO外接圆圆心N在AB上,得出AN=BN=AB=,NE=BN-BE=,在Rt△MEN中,由勾股定理即可得出答案.【详解】解:(1)∵直线l的函数表达式为y=x+3,∴当x=0时,y=3;当y=0时,x=4;∴A(﹣4,0),B(0,3),∴OB=3,OA=4,AB==5,过点O作OC⊥AB于C,如图1所示:∵sin∠BAO=,∴,∴OC=>2,∴直线AB与⊙O的位置关系是相离;(2)如图2所示,分两种情况:①当点P在第一象限时,连接PB、PF,作PC⊥OB于C,则四边形OCPF是矩形,∴OC=PF=BP=2,∴BC=OB﹣OC=3﹣2=1,∴PC=,∴圆心P的坐标为:(,2);②当点P在第二象限时,由对称性可知,在第二象限圆心P的坐标为:(-,2).综上所知,圆心P的坐标为(,2)或(-,2).(3)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图3所示:则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD=(OA+OB﹣AB)=×(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2,∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BN=AB=,∴NE=BN﹣BE=﹣2=,在Rt△MEN中,MN=.【点睛】本题是圆的综合题目,考查了直线与圆的位置关系、直角三角形的内切圆与外接圆、勾股定理、切线长定理、正方形的判定与性质、矩形的判定与性质等知识;本题综合性强,熟练掌握直线与圆的位置关系,根据题意画出图形是解题的关键.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论