2022-2023学年吉林省长春市南关区东北师大附中九年级数学第一学期期末检测试题含解析_第1页
2022-2023学年吉林省长春市南关区东北师大附中九年级数学第一学期期末检测试题含解析_第2页
2022-2023学年吉林省长春市南关区东北师大附中九年级数学第一学期期末检测试题含解析_第3页
2022-2023学年吉林省长春市南关区东北师大附中九年级数学第一学期期末检测试题含解析_第4页
2022-2023学年吉林省长春市南关区东北师大附中九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为()A.2 B. C.4 D.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有()A.2个 B.3个 C.4个 D.5个3.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.A B.B C.C D.D4.如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是()A.2 B.3 C.4 D.55.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为()A.2 B.2 C.4 D.56.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.157.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A. B. C. D.8.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点9.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.10.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A. B.C. D.11.P(3,-2)关于原点对称的点的坐标是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)12.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.14.一元二次方程的两根之积是_________.15.写出一个以-1为一个根的一元二次方程.16.将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上,点、的度数分别为、,则的大小为___________17.若关于x的一元二次方程(a+3)x2+2x+a2﹣9=0有一个根为0,则a的值为_____.18.如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为__.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点A、B、C的坐标分别为(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1的坐标;(2)将△A1B1C1绕顶点A1逆时针旋转90°后得到对应的△A1B2C2,画出△A1B2C2,并求出线段A1C1扫过的面积.20.(8分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.22.(10分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD=CE.23.(10分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:速度路程指数(1)用含和的式子表示;(2)当行驶指数为,而行驶路程为时,求平均速度的值;(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.24.(10分)数学概念若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.理解概念(1)若点是的等角点,且,则的度数是.(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)①如图①,②如图②,深入思考(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)25.(12分)(1)计算:(π﹣3)0+(﹣1)﹣3﹣3×tan30°+;(2)解一元二次方程:3x2=5x﹣226.如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.

参考答案一、选择题(每题4分,共48分)1、D【分析】连接OB、OC,证明△OBC是等边三角形,得出即可求解.【详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴,故选:D.【点睛】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.2、B【分析】①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.【详解】①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.∴③④⑤正确.故选B.【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.3、C【解析】∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4−x),∴y=−x2+x.故选C.点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.4、C【分析】①根据开口方向,对称轴的位置以及二次函数与y轴的交点的位置即可判断出a,b,c的正负,从而即可判断结论是否正确;②根据对称轴为即可得出结论;③利用顶点的纵坐标即可判断;④利用时的函数值及a,b之间的关系即可判断;⑤利用时的函数值,即可判断结论是否正确.【详解】①∵抛物线开口方向向上,.∵对称轴为,∴.∵抛物线与y轴的交点在y轴的负半轴,∴,∴,故错误;②∵对称轴为,∴,,故正确;③由顶点的纵坐标得,,∴,∴,∴,故正确;④当时,,故正确;⑤当时,,故正确;所以正确的有4个,故选:C.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.5、A【分析】连接BO,根据垂径定理得出BD,在△BOD中利用勾股定理解出OD,从而得出AD,在△ABD中利用勾股定理解出AB即可.【详解】连接OB,∵AO⊥BC,AO过O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【点睛】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质.6、C【分析】根据图形求出正多边形的中心角,再由正多边形的中心角和边的关系:,即可求得.【详解】连接OA、OB、OC,如图,∵AC,AB分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOC==90°,∠AOB==120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n==12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.【点睛】本题考查正多边形的中心角和边的关系,属基础题.7、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案.【详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果所以摸出两个球颜色相同的概率是故选:C.【点睛】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来.8、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【点睛】本题考查三角形外接圆圆心的确定,属基础题.9、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.10、C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.11、B【解析】根据平面坐标系中点P(x,y)关于原点对称点是(-x,-y)即可.【详解】解:关于原点对称的点的横纵坐标都互为相反数,因此P(3,-2)关于原点对称的点的坐标是(-3,2).故答案为B.【点睛】本题考查关于原点对称点的坐标的关系,解题的关键是理解并识记关于原点对称点的特点.12、B【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.二、填空题(每题4分,共24分)13、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将55000000用科学记数法表示为:5.5×1,故答案为:5.5×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、【分析】根据一元二次方程两根之积与系数的关系可知.【详解】解:根据题意有两根之积x1x2==-1.

故一元二次方程-x2+3x+1=0的两根之积是-1.

故答案为:-1.【点睛】本题重点考查了一元二次方程根与系数的关系,是基本题型.两根之积x1x2=.15、答案不唯一,如【解析】试题分析:根据一元二次方程的根的定义即可得到结果.答案不唯一,如考点:本题考查的是方程的根的定义点评:解答本题关键的是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.16、【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°−30°=56°,∴∠ACB=×56°=28°.故答案为:28°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.17、1【分析】将x=0代入原方程,结合一元二次方程的定义即可求得a的值.【详解】解:根据题意,将x=0代入方程可得a2﹣9=0,解得:a=1或a=﹣1,∵a+1≠0,即a≠﹣1,∴a=1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.18、1.【分析】作CE⊥x轴于E,如图,利用平行线分线段成比例得到===,设D(m,n),则C(2m,2n),再根据反比例函数图象上点的坐标特征得到k=4mn,则A(m,4n),然后根据三角形面积公式用m、n表示S△AOD和S△BCD,从而得到它们的比.【详解】作CE⊥x轴于E,如图,∵DB∥CE,∴===,设D(m,n),则C(2m,2n),∵C(2m,2n)在反比例函数图象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD与△BCD的面积比=mn:mn=1.故答案为1.【点睛】考核知识点:平行线分线段成比例,反比例函数;数形结合,利用平行线分线段成比例,反比例函数定义求出点的坐标关系是关键.三、解答题(共78分)19、(1)详见解析;(2)图详见解析,【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)根据题意,作出对应点,然后顺次连接即可得到图形,再根据扇形的面积公式即可求出面积.【详解】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为:(-1,4);(2)如图所示,△A1B2C2即为所求;.所以,线段A1C1扫过的面积=.【点睛】本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.20、(1)证明见解析(2)1【解析】(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF.∴∠FDC=∠EBC.∵BE平分∠DBC,∴∠DBE=∠EBC.∴∠FDC=∠EBE.又∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC.∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=15°.∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC.∴∠BDF=15°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF.∴BD=BF,∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠DEG.∴∠DGB=180°﹣22.5°﹣67.5°=90°,即BG⊥DF.∵BD=BF,∴DF=2DG.∵△BDG∽△DEG,BG×EG=1,∴.∴BG×EG=DG×DG=1.∴DG=2∴BE=DF=2DG=1.(1)根据旋转性质求出∠EDG=∠EBC=∠DBE,根据相似三角形的判定推出即可.(2)先求出BD=BF,BG⊥DF,求出BE=DF=2DG,根据相似求出DG的长,即可求出答案21、见解析.【分析】根据位似图形的画图要求作出位似图形即可.【详解】解:如图所示,△A1B1C1即为所求.【点睛】本题主要考察位似图形的作图,掌握位似图形的画法是解题的关键.22、见解析【解析】试题分析:作BF∥AC交EC于F,通过证明△FBC≌△DBC,得到CD=CF,根据三角形中位线定理得到CF=CE,等量代换得到答案.试题解析:证明:作BF∥AC交EC于F.∵BF∥AC,∴∠FBC=∠ACB.∵AB=AC,∴∠ABC=∠ACB,∴∠FBC=∠ABC.∵BF∥AC,BE=AB,∴BF=AC,CF=CE.∵CD是AB边上的中线,∴BD=AB,∴BF=BD.在△FBC和△DBC中,∵BF=BD,∠FBC=∠DBC,BC=BC,∴△FBC≌△DBC,∴CD=CF,∴CD=CE.点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线、灵活运用定理是解题的关键.23、(1);(2)50km/h;(3)90km/h.【分析】(1)设K=mv2+nsv,则P=mv2+nsv+1000,利用待定系数法求解可得;

(2)将P=500代入(1)中解析式,解方程可得;

(3)将s=180代入解析式后,配方成顶点式可得最值情况.【详解】解:(1)设K=mv2+nsv,则P=mv2+nsv+1000,由题意得:,整理得:,解得:,则P=﹣v2+sv+1000;(2)根据题意得﹣v2+40v+1000=500,整理得:v2﹣40v﹣500=0,解得:v=﹣10(舍)或v=50,答:平均速度为50km/h;(3)当s=180时,P=﹣v2+180v+1000=﹣(v﹣90)2+9100,∴当v=90时,P最大=9100,答:若行驶指数值最大,平均速度的值为90km/h.【点睛】本题主要考查待定系数法求函数解析式、解二元一次方程组、解一元二次方程的能力及二次函数的性质,熟练掌握待定系数法求得函数解析式是解题的关键.24、(1)100、130或1;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i)若=时,∴==100°(ii)若时,∴(360°-)=130°;(iii)若=时,360°--=1°,综上所述:=100°、130°或1°故答案为:100、130或1.(2)选择①:连接∵∴∴∵,∴∴是的等角点.选择②连接∵∴∴∵四边形是圆的内接四边形,∴∵∴∴是的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC≠∠AOB≠∠BOC,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误;③正三角形的每个中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论