




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是()A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心2.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根3.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°4.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40° B.50° C.65° D.75°5.在平面直角坐标系中,△ABC与△A1B1C1位似,位似中心是原点O,若△ABC与△A1B1C1的相似比为1:2,且点A的坐标是(1,3),则它的对应点A1的坐标是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)6.二次函数,当时,则()A. B. C. D.7.下列函数中属于二次函数的是()A.y=x B.y=2x2-1 C.y= D.y=x2++18.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x-4)2=17 D.(x-4)2=159.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°10.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个11.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点12.在下列函数图象上任取不同两点,,一定能使成立的是()A. B.C. D.二、填空题(每题4分,共24分)13.两同学玩扔纸团游戏,在操场上固定了如下图所示的矩形纸板,E为AD中点,且∠ABD=60°,每次纸团均落在纸板上,则纸团击中阴影区域的概率是________.14.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.15.方程的根是____.16.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为3cm,则该莱洛三角形的周长为_______cm.17.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.18.点在线段上,且.设,则__________.三、解答题(共78分)19.(8分)如图,在△ABC中,∠ACB=90°,D为AC的中点,DE⊥AB于点E,AC=8,AB=1.求AE的长.20.(8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).21.(8分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?22.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:(1)甲、乙的平均成绩分别是多少?(2)甲、乙这5次比赛的成绩的方差分别是多少?(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?23.(10分)某校在基地参加社会活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留有一个宽为3米的出入口,如图所示.如何设计才能使园地的面积最大?下面是两位同学争议的情境:小军:把它围成一个正方形,这样的面积一定最大.小英:不对啦!面积最大的不是正方形.请根据上面信息,解决问题:(1)设米().①米(用含的代数式表示);②的取值范围是;(2)请你判断谁的说法正确,为什么?24.(10分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.25.(12分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?26.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:由图可得:OA=OB=OC=,所以点O在△ABC的外心上,故选B.2、A【分析】直接把已知数据代入进而得出c的值,再解方程根据根的判别式分析即可.【详解】∵x=﹣1为方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,∴原方程为x2-8x+9=0,∵=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程,根的情况由来判别,当>0时,方程有两个不相等的实数根,当=0时,方程有两个相等的实数根,当<0时,方程没有实数根.3、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D=112.5°.故选D.4、C【详解】∵AB是⊙O的切线,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故选C.5、C【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或,即可求出答案.【详解】由位似变换中对应点坐标的变化规律得:点的对应点的坐标是或,即点的坐标是或故选:C.【点睛】本题考查了位似变换中对应点坐标的变化规律,理解位似的概念,并熟记变化规律是解题关键.6、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.7、B【解析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A.y=x是正比例函数,不符合题意;B.y=2x2-1是二次函数,符合题意;C.y=不是二次函数,不符合题意;D.y=x2++1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.8、C【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,∴,即,故选:C.【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.9、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【点睛】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.10、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.11、B【详解】二次函数,所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为-3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.12、B【分析】根据各函数的增减性依次进行判断即可.【详解】A.∵k=3>0
∴y随x的增大而增大,即当x₂﹥
x₁时,必有y₂﹥
y₁.∴当x≤0时,﹥0
故A选项不符合;
B.
∵抛物线开口向下,对称轴为直线x=1
,∴当x≥1时y随x的增大而减小,即当x₂﹥
x₁时,必有y₂﹤
y₁∴当x≥1时,<0故B选项符合;
C.当x>0时,y随x的增大而增大,即当x₂﹥
x₁时,必有y₂﹥
y₁.
此时﹥0
故C选项不符合;
D.
∵抛物线的开口向上,对称轴为直线x=2,
当0﹤x﹤2时y随x的增大而减小,此时当x₂﹥
x₁时,必有y₂﹤
y₁,∴当0﹤x﹤2时,<0当x≥2时,y随x的增大而增大,即当x₂﹥
x₁时,必有y₂﹥
y₁,
此时﹥0
所以当x﹥0时D选项不符合.
故选:
B【点睛】本题考查的是一次函数、反比例函数、二次函数的增减性,增减区间的划分是正确解题的关键.二、填空题(每题4分,共24分)13、【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据E为AD中点得出S△ODES△OAD,进而求解即可.【详解】∵ABCD是矩形,∴S△AOD=S△AOB=S△BOC=S△CODS矩形纸板ABCD.又∵E为AD中点,∴S△ODES△OAD,∴S△ODES矩形纸板ABCD,∴纸团击中阴影区域的概率是.故答案为:.【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.14、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【点睛】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.15、,【分析】把方程变形为,把方程左边因式分解得,则有y=0或y-5=0,然后解一元一次方程即可.【详解】解:,∴,∴y=0或y-5=0,∴.故答案为:.【点睛】此题考查了解一元二次方程-因式分解法,其步骤为:移项,化积,转化和求解这几个步骤.16、【分析】直接利用弧长公式计算即可.【详解】解:该莱洛三角形的周长=3×.故答案为:.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.17、【解析】过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,分别求出C,E,F的坐标,即可求出的值.【详解】如图:过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,则E(,2a),∵BN∥CM,∴△OCM∽△OBN,∴=,∴BN=3a,∴B(,3a),∴直线OB的解析式y=x,∴C(,2a),∵FH∥AG,∴△OAG∽△OFH,∴,∵FH=OD=2a,∴AG=a,∴A(,a),∴直线OA的解析式y=x,∴F(,2a),∴==,故答案为:【点睛】本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.18、【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).故答案为:.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.三、解答题(共78分)19、.【分析】求出AD的长,根据△ADE∽△ABC,可得,则可求出AE的长.【详解】解:∵AC=8,D为AC的中点,∴AD=4,∵DE⊥AB,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴,∴AE=.【点睛】本题考查的知识点是相似三角形判定及其性质,熟记定理和性质是解题的关键.20、32.2m.【详解】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=25°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=,∴BE=CE•cot30°=12×=12,在Rt△BDE中,由∠DBE=25°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.2.答:楼房CD的高度约为32.2m.考点:解直角三角形的应用——仰角俯角问题.21、每轮感染中平均一台电脑感染11台.【分析】设每轮感染中平均一台电脑感染x台,根据经过两轮被感染后就会有(1+x)2台电脑被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.【点睛】本题考查了一元二次方程的应用-传播问题,掌握传播问题中的等量关系,正确列出一元二次方程是解题的关键.22、(1)=8(环),=8(环);(2),;(3)甲胜出,理由见解析;(4)见解析.【分析】(1)根据平均数的计算公式先求出平均数,
(2)根据方差公式进行计算即可;(3)根据方差的意义,方差越小越稳定,即可得出答案.(4)叙述符合题意,有道理即可【详解】(1)(环),(环)(2)(3)甲胜出.因为<,甲的成绩稳定,所以甲胜出.(4)如果希望乙胜出,应该制定的评判规则为:如果平均成绩相同,则命中满环(10环)次数多者胜出.(答案不唯一)【点睛】本题考查一组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.23、(1)①;②;(2)小英的说法正确,理由见解析【分析】(1)①根据题意表示出来即可;②由题意列出不等式解出即可.(2)先用公式算出面积,再利用配方法求最值即可判断.【详解】(1)①由题意得:.∴答案为:.②≥0,解得.∴.(2)小英的说法正确,理由是:.又在范围内,当时,面积最大.此时,而,四边形不是正方形.小英的说法正确.【点睛】本题考查二次函数的应用,关键在于通过题目找出等量关系列式解题.24、1【分析】由勾股定理求出AB=1,由旋转的性质得出BE=BC=6,即可得出答案.【详解】∵在△ABC中,∠C=90°,CB=6,CA=8,∴AB==10,由旋转的性质得:BE=BC=6,∴AE=AB﹣BE=10﹣6=1.【点睛】本题考查了旋转的性质以及勾股定理;熟练掌握旋转的性质是解题的关键.25、4株【分析】根据已知假设每盆花苗增加株,则每盆花苗有株,得出平均单株盈利为元,由题意得求出即可。【详解】解:设每盆花苗增加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度借车车辆使用限制免责协议书
- 2025年度共享办公空间版房屋租赁合同
- 公司冠名赞助合同范本
- 冷库出让合同范例
- 编制电力通讯铁塔项目可行性研究报告编制说明
- 2025年度学生就读协议书:艺术教育特色班级合作协议
- 二零二五年度租房安全协议及消防设施维护管理合同
- 中国物流服务市场全面调研及行业投资潜力预测报告
- 2025年度健身中心健身俱乐部加盟管理合同
- 全热交换转轮项目可行性研究报告申请报告
- 郑州2025年河南郑州市公安机关招聘辅警1200人笔试历年参考题库附带答案详解
- 2025年语文高考复习计划解析
- 微电网运行与控制策略-深度研究
- 中职高教版(2023)语文职业模块-第五单元:走近大国工匠(一)展示国家工程-了解工匠贡献【课件】
- 物业管理车辆出入管理制度
- 家庭康复服务的商业价值与发展趋势
- 2025年施工项目部《春节节后复工复产》工作实施方案 (3份)-75
- 矿山安全生产工作总结
- 小学教师培训课件:做有品位的小学数学教师
- U8UAP开发手册资料
- 监护人考试20241208练习试题附答案
评论
0/150
提交评论