九年级下学期数学中考复习《轴对称最短路径问题》解答题专题训练_第1页
九年级下学期数学中考复习《轴对称最短路径问题》解答题专题训练_第2页
九年级下学期数学中考复习《轴对称最短路径问题》解答题专题训练_第3页
九年级下学期数学中考复习《轴对称最短路径问题》解答题专题训练_第4页
九年级下学期数学中考复习《轴对称最短路径问题》解答题专题训练_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学中考复习《轴对称最短路径问题》解答题专题训练(附答案)1.如图,在△ABC中,AB=AC,D是BC的中点,EF垂直平分AC,交AC于点E,交AB于点F,M是直线EF上的动点.(1)当MD⊥BC时.①若ME=1,则点M到AB的距离为;②若∠CMD=30°,CD=3,求△BCM的周长;(2)若BC=8,且△ABC的面积为40,则△CDM的周长的最小值为.2.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,求∠BAC的大小.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小,若存在,标出点P的位置并求PB+CP的最小值,若不存在,说明理由.3.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点的坐标分别为;(2)△ABC的面积是;(3)在x轴上作一点P,使PA+PB的值最小.(保留作图痕迹,不写作法)4.在平面直角坐标系xOy中,已知点A(1,1),B(3,2).(1)如图1,在y轴上是否存在一点P,使PA+PB最小,若存在求出点P的坐标;若不存在,请说明理由.(2)如图2,点C坐标为(4,1),点D由原点O沿x轴正方向以每秒1个单位的速度运动,求点D运动几秒时,四边形ABCD是平行四边形.5.如图,在矩形ABCD中,AB=2,∠ABD=60°,G,H分别是AD,BC边上的点,且AG=CH,E,O,F分别是对角线BD上的四等分点,顺次连接G,E,H,F,G.(1)求证:四边形GEHF是平行四边形;(2)填空:①当AG=时,四边形GEHF是矩形;②当AG=时,四边形GEHF是菱形;(3)求四边形GEHF的周长的最小值.6.如图,C为线段BD上﹣动点,分别过点B、D作AB⊥BD于点B,ED⊥BD于点D,连接AC、EC,已知AB=3、DE=2、BD=12,设CD=x.(1)直接写出用含x的代数式表示的AC+CE的长(无需化简);(2)观察图形并说明在什么情况下AC+CE的值最小?最小值是多少?写出计算过程;(3)综上,直接写出代数式的最小值.7.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.8.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小.例如:(1)对于任意两个代数式M,N的大小比较,有下面的方法:当M﹣N>0时,M>N;当M﹣N=0时,M=N;当M﹣N<0时,M<N.反过来也成立.因此,我们把这种比较两个代数式大小的方法叫做“作差法”.(2)对于比较两个正数a,b的大小,我们还可以用它们的平方进行比较:∵a2﹣b2=(a+b)(a﹣b),a+b>0,∴(a2﹣b2)与(a﹣b)的符号相同.当a2﹣b2>0时,a﹣b>0,得a>b;当a2﹣b2=0时,a﹣b=0,得a=b;当a2﹣b2<0时,a﹣b<0,得a<b.问题解决(3)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为S1,李明同学的用纸总面积为S2,回答下列问题:①S1=(用含x,y的代数式表示);S2=(用含x,y的代数式表示);②试比较谁的用纸总面积更大?(4)如图1所示,要在燃气管道l上修建一个泵站,向A,B两镇供气,已知A,B到l的距离分别是3km,4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1=km(用含x的代数式表示);②在方案二中,a2=km(用含x的代数式表示);③请分析说明哪种方案铺设的输气管道较短?(5)甲、乙两位采购员同去一家饲料公司购买两次饲料,两次购买的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000kg,乙每次用去1000元,而不管购买多少饲料.设两次购买的饲料单价分别为m元/kg和n元/kg(m,n是正数,且m≠n),试分析哪位采购员的购货方式合算?9.在平面直角坐标系xOy中,点A、B分别在y轴和x轴上,已知点A(0,4),以AB为直角边在AB左侧作等腰直角△ABC,∠CAB=90°.(1)当点B在x轴正半轴上,且AB=8时,①求AB解析式;②求C点坐标;(2)当点B在x轴上运动时,连接OC,求AC+OC的最小值及此时B点坐标.10.如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.11.如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,C,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值.12.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△PAB的周长最小时,求∠APB的度数.13.如图,四边形ABCD是菱形,对角线AC和BD相交于点O、点E是CD的中点,过点C作AC的垂线,与OE的延长线交于点F,连接FD.(1)求证:四边形OCFD是矩形;(2)若四边形ABCD的周长为4,△AOB的周长为3+,求四边形OCFD的面积;(3)在(2)问的条件下,BD上有一动点Q,CD上有一动点P,求PQ+QE的最小值.14.如图1,在△ABC中,∠ABC的平分线与边AC的垂直平分线相交于点D,过点D作DF⊥BC于点F,DG⊥BA交BA的延长线于点G.(1)求证:AG=CF;(2)如图2,点M,N分别是线段AB,射线BD上的动点,若BC=5,S△ABC=5,求MN+AN的最小值.15.如图,在平面直角坐标系中,点A(﹣2,0),B(2,0),点C是y轴正半轴上一点,点P在BC的延长线上.(1)若点P的坐标为(﹣1,2),①求△PAB的面积;②已知点Q是y轴上任意一点,当△PAQ周长取最小值时,求点Q的坐标;(2)连接AC,若∠APC=∠ACP,∠APC比∠PAB大20°,求∠ABC的度数.16.已知如图,在平行四边形ABCD中,点E是AD边上一点,连接BE,CE,BE=CE,BE⊥CE,点F是EC上一动点,连接BF.(1)如图1,当BF⊥AB时,连接DF,延长BE,CD交于点K,求证:FD=DK;(2)如图2,以BF为直角边作等腰Rt△FBG,∠FBG=90°,连接GE,若DE=,当点F在运动过程中,求△BEG周长的最小值.17.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若,AC=4,求OE的长;(3)若点P是BD上一动点,在(2)的条件下,请求出△PCE周长的最小值.18.如图,在平面直角坐标系中,OA=OB=6,OD=1,点C为线段AB的中点.(1)直接写出点C的坐标为;(2)点P是x轴上的动点,当PB+PC的值最小时,求此时点P的坐标;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.19.如图,在正方形ABCD中,F为BC为边上的定点,E、G分别是AB、CD边上的动点,AF和EG交于点H且AF⊥EG.(1)求证:AF=EG;(2)若AB=6,BF=2.①若BE=3,求AG的长;②连结AG、EF,求AG+EF的最小值.20.如图1,在△ABC中,AB=AC,点E为边AB上一点,连接CE.(1)如图1,以CE为边作等腰三角形DCE,DE=DC,连接AD,且满足条件AB⊥AD,∠B=∠ADE,∠ACD=3∠B,求证:DE⊥DC.(2)如图2,∠BAC=120°,过点A作直线AM⊥BC交BC于点M,点F为直线M上一点,BE=AF,连接CF,当CE+CF最小时,直接写出∠ECF的度数.参考答案1.解:(1)①∵MD⊥BC,AB=AC,D是BC的中点,∴A、M、D共线,∴AD是△ABC的对称轴,∵ME=1,∴点M到AB的距离为1,故答案为:1;②∵D是BC的中点,MD⊥BC,∴MB=MC,∴MD平分∠BMC,∴∠BMC=2∠CMD=60°,∴△BCM是等边三角形,∴BC=BM=MC,∵D是BC的中点,∴BC=2CD=6,∴BM=MC=BC=6,∴△BCM的周长为BC+BM+MC=18;(2)连接AD交EF于点M,∵EF是AC的垂直平分线,∴AM=CM,∴CM+MD=AM+MD=AD,此时△CMD的值最小,最小值为AD+CD,∵BC=8,△ABC的面积为40,∴AD=10,∵D是BC的中点,∴CD=4,∴AD+CD=14,∴△CMD的周长最小值为14,故答案为:14.2.解:(1)∵AB=AC,∠B=70°,∴∠BAC=180°﹣70°×2=40°;(2)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(3)当点P与点M重合时,PB+CP的值最小,为AC长,最小值是8cm.3.解:(1)如图A1(﹣1,1)B1(﹣4,2)C1(﹣3,4),故答案为:(﹣1,1)、(﹣4,2)、(﹣3,4);(2)△A1B1C1的面积=(2+3)×3÷2﹣=7.5﹣1﹣3=3.5.(3)如图所示,作点A关于x轴的对称点A',再连接A'B,与x轴的交点P即为所求.4.解:(1)作A点关于y轴的对称点M(﹣1,1),连接BM后与y轴的交点即为所求的点P,如下图所示:设直线BM的解析式为y=kx+b,代入M(﹣1,1),B(3,2),,解之得,∴直线BM解析式为,令x=0,解得y=,∴存在点P的坐标,且P(0,);(2)当四边形ABCD是平行四边形,只能是AC为一条对角线,另一条对角线为BD,设D(m,0),由中点坐标公式可知:线段AC的中点坐标为,即,线段BD的中点坐标为,即,又线段AC与BD中点为同一个点,∴,解得m=2,故四边形ABCD是平行四边形,D点的坐标为(2,0),又速度为1个单位每秒,∴经过2秒后,四边形ABCD是平行四边形.5.(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠GDF=∠HBE,∵AG=CH,∴DG=BH,∵E,O,F分别是对角线BD上的四等分点,∴DF=BE,在△DGF和△BHE中,,∴△DGF≌△BHE(SAS),∴GF=HE,∠DFG=∠BEH,∴∠EFG=∠FEH,∴GF∥HE,∴四边形GEHF是平行四边形;(2)①当AG=时,四边形GEHF是矩形.理由如下:连接GH,如下图,∵∠BAD=90°,∠ABD=60°,∴∠ADB=30°,∴BD=2AB=4,∴AD=,∵AG=CH=,AD=BC=2,∴,∵AG∥BH,∴四边形ABHG是平行四边形,∵GH=AB=2,∵E,O,F分别是对角线BD上的四等分点,∴EF=BD=2,∴EF=GH,∵四边形GEHF是平行四边形,∴四边形GEHF是矩形,故答案为:;②当AG=时,四边形GEHF是菱形.理由如下:连接BG、DH、GH,如下图,∵AG=CH,AD=BC,∴DG=BH,∵DG∥BH,∴四边形BHDG是平行四边形,∵AG=,AB=2,∠A=90°,∴DG=AD﹣AG=,BG=,∴BG=DG,∴四边形BHDG是菱形,∴GH⊥BD,即GH⊥EF,∵四边形GEHF是平行四边形,∴四边形GEHF是菱形.故答案为:;(3)解:过E作EM⊥AD于M,延长EM到点N,使得MN=EM,连接FN,NG,过F作FP⊥EM于点P,如下图,则MN=EM=DE=,FP∥AD,EG=NG,∴∠EFP=∠ADB=30°,∴EP=EF=1,∴PN=EM+MN﹣EP=2,PF=,∵EG+FG=NG+FG≥FN,当F、G、N三点共线,EG+FG=NG+FG=FN的值最小,其值为FN=,∴四边形GEHF的周长的最小值为:2(EG+FG)=2.6.解:(1)∵AB⊥BD,AB=3,CD=x,∴BC=12﹣x,在Rt△ABC中,AC==,∵ED⊥BD,DE=2,在Rt△DEC中,CE==,∴AC+CE=,故答案为:;(2)如图,当C是AE和BD交点时,延长ED与AB的垂线AF交于点F,∴AC+CE=AE===13,∴AC+CE的最小值为13;(3)如图,AB=3,ED=2,DB=4,连接AE交BD于点C,∴AE=的最小∴AE的长即为代数式的最小值,∵四边形ABDF为矩形,∴AB=DF=1,AF=BD=4,在Rt△AEF中,由勾股定理得,AE===5,即代数式的最小值为5.7.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.8.解:(3)①S1=3x+7y,S2=2x+8y.故答案为:3x+7y,2x+8y.②S1﹣S2=(3x+7y)﹣(2x+8y)=x﹣y,∵x>y∴x﹣y>0∴S1﹣S2>0∴S1>S2∴张丽同学的用纸总面积更大.(4)①a1=AB+AC=(3+x)km,故答案为:(3+x).②作BF⊥A′A于点F,在Rt△BAF中,由勾股定理得BF2=AB2﹣AF2=x2﹣1,在Rt△BFA′中,由勾股定理得A′B=A′P+BP=AP+BP==km,∴a2=km,故答案为:.③a12﹣a22=(x+3)2﹣()2=6x﹣39,由6x﹣39=0,得,此时a12﹣a22=0,即a1=a2,两种方案铺设的输气管道一样长;由6x﹣39>0,得,此时a12﹣a22>0,即a1>a2,方案二铺设的输气管道较短;由6x﹣39<0,得,此时a12﹣a22<0,即a1<a2,方案一铺设的输气管道较短.(5)===∵m≠n∴所以乙采购员的购货方式合算.9.解:(1)①∵A(0,4),AB=8,∴OB==4,∴B(4,0),设直线AB的解析式为y=kx+4,∴0=4k+4,k=﹣,∴AB解析式:y=﹣x+4;②过点A作x轴的平行线,分别过点C、B作y轴的平行线,交于G、H.则△AHB≌△CGA(AAS)∴AG=HB=4,CG=AH=4,∴C(﹣4,4﹣4);(2)由△AGC≌△BHA可知AG=4,(B在x轴负半轴同理可说明)点C在直线x=﹣4上运动,作点O关于直线x=﹣4的对称点O',∴OC=O'C=4,OO'=4+4=8,∴AC+OC=AC+O'C.AC+OC的最小值为AO'===4,此时OB=AH=CG=2,∴B(2,0).10.证明:(1)∵∠ABC=∠ADC=90°,BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠ACB=∠ACD;(2)①∵Rt△ABC≌Rt△ADC,∴∠BAC=∠CAD,∵CA=CE,∴∠CAE=∠CEA,∵∠EBA=90°,∴∠BEA=∠BAC=∠CAE=30°,∵PD⊥AE,MP⊥PD,∴AE∥MP,∴∠PMC=∠MAE=30°,∵ME∥AB,∴∠MEB=∠ABE=90°,∴∠MEA=90°+30°=120°,∵∠MAE=30°,∴∠EMA=30°,∵CP⊥MP,CE⊥ME,∠MCP=∠MCE=60°,∴△NEC≌△NPC(SAS),∴EN=PN,∴N是EP的中点,NC⊥PE,∴AM垂直平分PE;②延长PD、ME交于Q点,由①知,∠BEA=30°,∠MEB=90°,∴∠MEA=120°,∴∠DEQ=60°,∵PD⊥AE,∴∠EDQ=90°,∴∠EQD=30°,∵∠CPN=30°,∴∠EPD=∠DQE,∴PE=EQ,∴ME+PE=QE+ME≥MQ,此时ME+PE的值最小,∵点O是直线AE上的动点,∴当MO+PO的值最小时,E点与O点重合.11.解:(1)证明:连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN=AF,NG=CF,即MN+NG=(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;12.解:(1)①∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;②∵PO=5,∴GO=HO=5,当∠MON=90°时,∠GOH=180°,∴点G,O,H在同一直线上,∴GH=GO+HO=10;(2)如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,则AP=AP',BP=BP“,此时△PAB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×60°=120°,∴∠OP′P″=∠OP″P′=(180°﹣120°)÷2=30°,∴∠OPA=∠OP'A=30°,同理可得∠BPO=∠OP″B=30°,∴∠APB=30°+30°=60°.13.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∵AC⊥CF,CF∥BD∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∴四边形OCFD是矩形;(2)解:∵菱形ABCD的周长为4,∴AB=BC=CD=DA=,∠COD=90°,AO=CO,BO=DO,∵△AOB的周长为3+,∴AB+AO+BO=3+,∴AO+BO=3,∴CO+DO=3,在Rt△COD中,CO2+DO2=(CO+DO)2﹣2CO•DO=CD2,∴32﹣2CO•DO=()2,∴CO•DO=2,∴四边形OCFD的面积=CO•DO=2;(3)解:如图,过点O作OG⊥AD于点G,过点E作EH⊥AD于点H,则四边形OGHE是矩形.∴OG=EH,由(2)可知,OA•OD=2,AD=,∴•OA•OD=•AD•OG,∴OG=,∴EH=OG=∵四边形ABCD是菱形,∴BD平分∠ADC,作点P关于DB的对称点P′,连接QP′,∴PQ+QE=EQ+QP′≥EH=,∴PQ+QE的最小值为.14.(1)证明:如图1,连接AD,DC,∵BD平分∠ABC,DG⊥BA,DF⊥BC,∴DG=DF.又∵点D在边AC的垂直平分线上,∴DA=DC.在Rt△DGA和Rt△DFC中,,∴Rt△DGA≌Rt△DFC(HL).∴AG=CF.(2)解:∵BD平分∠ABC,点M在线段AB上,∴点M关于BD的对称点M′在边BC上.如图2,作点M关于BD的对称点M′,连接M′N,过点A作AP⊥BC于点P,∴MN=M′N.∴MN+AN=M′N+AN≥AP.∴当点A,N,P在同一条直线上且AP⊥BC时,MN+AN的值最小,最小值即为AP的长.∵S△ABC=5,∴.∵BC=5,∴AP=2.∴MN+AN的最小值为2.15.解:(1)①∵点A(﹣2,0),B(2,0),P(﹣1,2),∴△PAB的面积为4×2=4;②如图,连接QB,∵A和B关于y轴对称,∴QA=QB,∴QA+QP=QB+QP,∴当P、Q、B三点共线时QB+QP最小,即△PAQ周长取最小,∴点Q为直线PB与y轴的交点,设直线PB为y=kx+b,直线过点B(2,0),P(﹣1,2),∴,解得,∴y=﹣x+,∵当x=0时,y=,∴Q(0,),∴当△PAQ周长取最小值时,点Q的坐标(0,);(2)如图,连接AC,设∠ABC=x,∵CA=CB,∴∠CAB=∠ABC=x,∴∠PCA=∠CAB+∠ABC=2x,∴∠APC=∠ACP=2x,∴∠PAB=2x﹣20°,∵∠PAB+∠PBA+∠APB=180°,∴2x﹣20°+2x+x=180°,解得x=40°,∴∠ABC的度数为40°.16.(1)证明:如图1中,延长BF交CD于点T.∵EB=EC,∠BEC=90°,∴∠ECB=∠EBC=45°,∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DEC=∠ECB=45°,∵∠CEK=90°,∴∠DEK=∠DEF,∵AB⊥BF,AB∥CD,∴BT⊥CD,∴∠BEF=∠CTF=90°,∵∠EFB=∠TFC,∴∠EBF=∠ECK,在△BEF和△CEK中,,∴△BEF≌△CEK(ASA),∴EF=EK,在△DEK和△DEF中,,∴△DEK≌△DEF(SAS),∴DK=DF;(2)解:如图2,作BK⊥BE,GK⊥BK于点K,延长KG交射线CE于点P,∵∠EBK=∠FBG=90°,∴∠KBG=∠EBF=90°﹣∠GBE,∵∠K=∠BEF=90°,BG=BF,∴△BKG≌△BEF(AAS),∴BK=BE;∵∠EBK=∠K=∠BEP=90°,∴四边形BEPK是正方形,∴PE=BE=CE,∴当点F在CE上运动时,点G在PK上运动;延长EP到点Q,使PQ=PE,连接BQ交PK于点G,∵PK垂直平分EQ,∴点Q与点E关于直线PK对称,∵两点之间,线段最短,∴此时GE+GB=GQ+GB=BQ最小,∵BE为定值,∴此时GE+GB+BE即△BEG的周长最小;作DH⊥CE于点H,则∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=()2,∴DH=EH=1;∴CH===2,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ==3,∴GE+GB+BE=3+3,∴△BEG周长的最小值为3+3.17.(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.(3)如图,连接AE交BD于点P,连接PC,∵A,C关于BD对称,∴PC+PE=PA+PE=AE,此时PC+PE最小,即△PCE周长的最小,根据菱形ABCD的面积得BC•DE=BD•AC,∴2DE=8×4×,∴DE=,∴AE=,∵CE=,∴△PCE周长的最小值为+.18.解:(1)∵OA=OB=6,∴A(6,0),B(0,6),∵点C为线段AB的中点,∴点C的坐标为(3,3);故答案为:(3,3).(2)作点B关于x轴的对称点B',连接CB'交x轴于点P,此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论