下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市沾益县德泽乡中学2021-2022学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若点到直线的距离为1,则值为()A.
B.C.或-
D.或参考答案:D2.设集合(
)A.
B.
C.
D.参考答案:A略3.函数的图象的大致形状是A. B.C. D.参考答案:A令x=0可得,则排除C、D;,当时,,当时,,故排除B,本题选择A选项.4.已知M为直线上任意一点,点,则过点M,N且与直线相切的圆的个数可能为
(
)
A.0或1
B.1或2
C.0,1或2
D.2参考答案:C略5.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为(
)A、101
B、808
C、1212
D、2012参考答案:B6.若A={x∈Z|2≤22-x<8},B={x∈R||log2x|>1},则A∩(?RB)的元素个数是()A.0
B.1
C.2
D.3参考答案:C略7.设集合,则集合(
)
A
B
C
D
参考答案:B8.观察式子:,,,…,则可归纳出式子为(
)
A.
B.C.
D.参考答案:C略9.若都是实数,且,,则与的大小关系是
A.
B.
C.
D.不能确定参考答案:A10.6名同学安排到3个社区A,B,C参加志愿者服务,每个社区安排两名同学,其中甲同学必须到A社区,乙和丙同学均不能到C社区,则不同的安排方法种数为()A.12 B.9 C.6 D.5参考答案:B【考点】D3:计数原理的应用.【分析】本题可以分为两类进行研究,一类是乙和丙之一在A社区,另一在B社区,二类是乙和丙在B社区,计算出每一类的数据,然后求其和即可【解答】解:由题意将问题分为两类求解第一类,若乙与丙之一在甲社区,则安排种数为A21×A31=6种第二类,若乙与丙在B社区,则A社区沿缺少一人,从剩下三人中选一人,另两人去C社区,故安排方法种数为A31=3种故不同的安排种数是6+3=9种故选B二、填空题:本大题共7小题,每小题4分,共28分11.如图,正方体,点M是的中点,点O是底面的中心,P是上的任意一点,则直线BM与OP所成的角大小为
▲
.
参考答案:略12.已知椭圆的短轴长为2,离心率为,设过右焦点的直线与椭圆交于不同的两点,过作直线的垂线,垂足分别为,记,若直线的斜率,则的取值范围为___________.参考答案:13.设外的两条直线,给出三个论断:①;②;③以其中的两个为条件,余下的一个为结论构成三个命题,写出你认为正确的一个命题:
。参考答案:①②③或①③②14.设正项等差数列{an}的前2011项和等于2011,则+的最小值为.参考答案:2【考点】基本不等式;基本不等式在最值问题中的应用;等差数列的前n项和.【专题】等差数列与等比数列.【分析】利用等差数列的前n项和公式及其性质、基本不等式即可得出.【解答】解:∵正项等差数列{an}的前2011项和等于2011,∴==2011,得到a2+a2010=2.∴+===2.当且仅当a2=a2010=1时取等号.故答案为:2.【点评】本题考查了等差数列的前n项和公式及其性质、基本不等式,属于基础题.15.已知点,过点A的直线:,若可行域的外接圆直径为12,则实数的值是_______________.参考答案:16.把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,求P(B|A)=
参考答案:略17.已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.参考答案:
【考点】椭圆的简单性质.【分析】设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,再由三角形的面积公式以及内切圆的圆心与三个顶点将三角形△PF1F2分成三个小三角形,分别求面积再求和,得到a,c的方程,由离心率公式计算即可得到.【解答】解:设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,由三角形的面积公式可得=×2c×4=4c,由△PF1F2的内切圆的半径为,则=×(m+n+2c)=(2a+2c)=(a+c),即有4c=(a+c),即为5c=3a,则离心率e==.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,且.(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间.参考答案:(Ⅰ)由,得.………………1分当时,得,得.………………4分(Ⅱ)由(Ⅰ)可知,令,得或………………8分列表如下:x-1(1,+∞)f′(x)+0-0+f(x)极大值极小值故函数的单调递增区间是和;单调递减区间是. 12分19.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.参考答案:【考点】CG:离散型随机变量及其分布列;CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【分析】(I)从7张卡片中取出4张的所有可能结果数有,然后求出取出的4张卡片中,含有编号为3的卡片的结果数,代入古典概率的求解公式即可求解(II)先判断随机变量X的所有可能取值为1,2,3,4,根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(I)设取出的4张卡片中,含有编号为3的卡片为事件A,则P(A)==所以,取出的4张卡片中,含有编号为3的卡片的概率为(II)随机变量X的所有可能取值为1,2,3,4P(X=1)=P(X=2)=P(X=3)==P(X=4)==X的分布列为EX==x1234P21.(本题满分8分)已知是常数),且(为坐标原点).(1)求函数的单调递增区间;(2)若时,的最大值为4,求的值;
参考答案:21.解:(1),所以,所以由,有,所以的单调递增区间为(2),因为所以,当即时取最大值3+,所以3+=4,=1略21.在数列{an}中,已知a1=2,an+1=.(Ⅰ)证明数列{﹣1}为等比数列,并求数列{an}的通项公式;(Ⅱ)求证:ai(ai﹣1)<3参考答案:【考点】等比关系的确定;数列递推式;不等式的证明.【分析】(1)对an+1=两边求倒数得﹣1=(﹣1),由a1=2得出数列{﹣1}是首项为﹣,公比为的等比数列.写出其通项公式化简可得数列{an}的通项公式;(2)利用ai(ai﹣1)=<==﹣证出即可.【解答】(Ⅰ)解:由a1=2,an+1=得,对n∈N*,an≠0.从而由an+1=两边取倒数得,=+.即﹣1=(﹣1),∵a1=2,﹣1=﹣.∴数列{﹣1}是首项为﹣,公比为的等比数列.∴﹣1=﹣?=﹣∴=1﹣=.∴an=.故数列{an}的通项公式是an=.(Ⅱ)∵an=,∴ai(ai﹣1)=(i=1,2,,n),当i≥2时,∵ai(ai﹣1)=<==﹣,∴ai(ai﹣1)=a1(a1﹣1)+a2(a2﹣1)+…+an(an﹣1)=++…+<+(﹣)+(﹣)+…+(﹣)=2+1﹣=3﹣<3.22.在极坐标系中,设圆C1:ρ=4cosθ与直线l:θ=(ρ∈R)交于A,B两点.(Ⅰ)求以AB为直径的圆C2的极坐标方程;(Ⅱ)在圆C1任取一点M,在圆C2上任取一点N,求|MN|的最大值.参考答案:考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)圆C1:ρ=4cosθ化为ρ2=4ρcosθ,利用即可得出圆C1的直角坐标方程.由直线l:θ=(ρ∈R)可得直线l的倾斜角为,又经过原点,即可得出直角坐标方程.联立解得A,B坐标,即可得出圆的方程.再将其化为极坐标方程即可.(II)利用|MN|max=|C1C2|+r1+r2即可得出.解答:解:(Ⅰ)以极点为坐标原点,极轴为x轴的正半轴,建立直角坐标系,则由题意得圆C1:ρ=4cosθ化为ρ2=4ρcosθ,∴圆C1的直角坐标方程x2+y2﹣4x=0.直线l的直角坐标方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025大学食堂承包合同范本
- 工业生产车间钢结构楼梯施工协议
- 企业国际化发展战
- 住宅小区批荡施工合同
- 餐饮业授权经营的管理办法
- 投标联合体合规协议
- 会计审计合同管理规则
- 零售连锁公司广告牌安装施工合同
- 医疗技术合作保险
- 2024年特种用途树木研发与销售合同范本3篇
- 浙江大学医学院附属儿童医院招聘人员真题
- 2024年江苏省苏州市中考数学试卷含答案
- 软件测试汇报
- 吉林省长春市第一〇八学校2024-2025学年七年级上学期期中历史试题
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 初中《孙中山诞辰纪念日》主题班会
- 5.5 跨学科实践:制作望远镜教学设计八年级物理上册(人教版2024)
- 屠呦呦课件教学课件
- 阿斯伯格综合症自测题汇博教育员工自测题含答案
- 护理肝癌的疑难病例讨论
- 天津市2023-2024学年七年级上学期语文期末试卷(含答案)
评论
0/150
提交评论