下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市富源县中安第一中学2022-2023学年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.记定点M与抛物线上的点P之间的距离为d1,P到抛物线的准线
距离为d2,则当d1+d2取最小值时,P点坐标为(
)A.(0,0)
B.
C.(2,2)
D.参考答案:C2.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,若|AB|=4,则C的实轴长为()A.4 B.2 C.4 D.8参考答案:C【考点】双曲线的简单性质.【分析】根据题意,设出双曲线方程,由抛物线的几何性质可得抛物线y2=16x的准线方程,则可以设出A、B的坐标,利用|AB|=4,可得A、B的坐标,将其坐标代入双曲线方程可得λ的值,将其变形可得双曲线的标准方程,由实轴的公式计算可得答案.【解答】解:根据题意,要求等轴双曲线C的中心在原点,焦点在x轴上,则可以设其方程为:x2﹣y2=λ,(λ>0)对于抛物线y2=16x,其准线方程为x=﹣4,设等轴双曲线与抛物线的准线x=﹣4的两个交点A(﹣4,y),B(﹣4,﹣y)(y>0),若|AB|=4,则有|y﹣(﹣y)|=4,解可得y=2,即A(﹣4,2),B(﹣4,﹣2),代入双曲线方程可得:16﹣4=λ,解可得λ=12,则该双曲线的标准方程为:﹣=1,则a==2,其C的实轴长2a=4;故选:C.3.已知数列{an},{bn}满足a1=1,且an,an+1是方程x2﹣bnx+3n=0的两根,则b8等于()A.54 B.108 C.162 D.324参考答案:C【考点】数列与函数的综合.【分析】利用韦达定理推出关系式,然后逐步求解即可.【解答】解:数列{an},{bn}满足a1=1,且an,an+1是方程x2﹣bnx+3n=0的两根,可得:an+an+1=bn.anan+1=3n;a1=1,则a2=3,a3=3,a4=9,a5=9,a6=27,a7=27,a8=81,a9=81,∴b8=a8+a9=162.故选:C.4.若集合,,则A∩B=(
)A.(0,4) B.(-4,2] C.(0,2] D.(-4,4)参考答案:C【分析】直接利用交集的定义求解即可.【详解】因为集合,,所以,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.设,则的大小关系是A.
B.
C.
D.参考答案:A略6.已知抛物线的准线过双曲线的一个焦点,则双曲线的离心率为()A.
B.
C.
D.参考答案:C略7.给出下列命题:①a>bac2>bc2;②a>|b|a2>b2;③a>ba3>b3;④|a|>ba2>b2.其中正确的命题是()A.①②
B.②③
C.③④
D.①④参考答案:B8.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A.152
B.
126
C.
90
D.
54参考答案:B略9.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是
(
)A、分层抽样法,系统抽样法
B、分层抽样法,简单随机抽样法C、系统抽样法,分层抽样法
D、简单随机抽样法,分层抽样法参考答案:B10. 已知实数,则下列不等式中不能恒成立的一个是(
)A. B.
C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为___________万元.参考答案:1012.设点在点确定的平面上,则的值为
。参考答案:1613.观察右边的三角数阵,该数阵第行的所有数字之和为_______.
参考答案:401014.复数(1﹣i)(2+3i)(i为虚数单位)的实部是_________.参考答案:515.现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,名额分配的方法共有种(用数字作答).
参考答案:
84略16.已知直线x+3y+1=0和圆x2+y2﹣2x﹣3=0相交于A,B两点,则线段AB的垂直平分线的方程是.参考答案:3x﹣y﹣3=0考点:直线与圆相交的性质;直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:根据直线与圆相交于A,B两点,得到线段AB的垂直平分线过圆心,且斜率与直线AB的斜率乘积为﹣1,将圆方程化为标准方程,找出圆心坐标,根据直线AB方程求出线段AB垂直平分线斜率,即可确定出所求的直线方程.解答:解:将圆方程化为标准方程得:(x﹣1)2+y2=4,∴圆心坐标为(1,0),∵直线AB方程x+3y+1=0的斜率为﹣,∴线段AB的垂直平分线方程的斜率为3,则线段AB的垂直平分线的方程是y﹣0=3(x﹣1),即3x﹣y﹣3=0.故答案为:3x﹣y﹣3=0点评:此题考查了直线与圆相交的性质,以及直线的一般式方程与直线垂直关系,弄清题意是解本题的关键.17.已知函数若对任意x1≠x2,都有成立,则a的取值范围是
参考答案:(0,]略 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:x367910y1210887(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程=x+(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额(参考公式:==,=﹣).参考答案:【考点】BK:线性回归方程.【分析】(Ⅰ)随着x的增加,y减小,故y与x的是负相关,该地当日最低气温x和日营业额y的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程.(Ⅱ)将x=6,即可求得该店当日的营业额.【解答】解:(I)由散点图知:y与x之间是负相关;…因为n=5,=7,=9,(﹣5)=275﹣5×72=30;(xiyi﹣5)=294﹣5×7×9=﹣21.所以b=﹣0.7,…=﹣=9﹣(﹣0.7)×7=13.9.…故回归方程为y=﹣0.7x+13.9…(Ⅱ)当x=6时,y=﹣0.7×6+13.9=9.7.故预测该店当日的营业额约为970元…19.(14分)已知命题p:方程x2+mx+1=0有两个不相等的实根,命题q:关于x的不等式x2﹣2(m+1)x+m(m+1)>0对任意的实数x恒成立,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.参考答案:【考点】复合命题的真假.【专题】简易逻辑.【分析】若命题p正确,则△>0,解得m范围.若命题q正确,则△<0,解得m范围.若“p∨q”为真,“p∧q”为假,则p与q必然一真一假,即可得出.【解答】解:命题p:方程x2+mx+1=0有两个不相等的实根,∴△=m2﹣4>0,解得m>2或m<﹣2.命题q:关于x的不等式x2﹣2(m+1)x+m(m+1)>0对任意的实数x恒成立,∴△=4(m+1)2﹣4m(m+1)<0,解得m<﹣1.若“p∨q”为真,“p∧q”为假,则p与q必然一真一假,∴或,解得m>2或﹣2≤m<﹣1.∴实数m的取值范围是m>2或﹣2≤m<﹣1.【点评】本题考查了一元二次方程的实数根与判别式的关系、一元二次不等式的解与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.20.已知中,,,点在直线上,若的面积为,求出点坐标.参考答案:解析:由题得:.,(为点到直线的距离).设点坐标为,的方程为,即.由,解得或.点坐标为或.21.已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16.(Ⅰ)求a,b的值;(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.参考答案:【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【分析】(Ⅰ)由题设f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c﹣16,可得解此方程组即可得出a,b的值;(II)结合(I)判断出f(x)有极大值,利用f(x)有极大值28建立方程求出参数c的值,进而可求出函数f(x)在[﹣3,3]上的极小值与两个端点的函数值,比较这此值得出f(x)在[﹣3,3]上的最小值即可.【解答】解:(Ⅰ)由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c﹣16∴,即,化简得解得a=1,b=﹣12(II)由(I)知f(x)=x3﹣12x+c,f′(x)=3x2﹣12=3(x+2)(x﹣2)令f′(x)=3x2﹣12=3(x+2)(x﹣2)=0,解得x1=﹣2,x2=2当x∈(﹣∞,﹣2)时,f′(x)>0,故f(x)在∈(﹣∞,﹣2)上为增函数;当x∈(﹣2,2)时,f′(x)<0,故f(x)在(﹣2,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;由此可知f(x)在x1=﹣2处取得极大值f(﹣2)=16+c,f(x)在x2=2处取得极小值f(2)=c﹣16,由题设条件知16+c=28得,c=12此时f(﹣3)=9+c=21,f(3)=﹣9+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《诚信做人到永远》课件
- 2024-2025学年福建省福州市福清市高二上学期期中考试物理试题(解析版)
- 单位管理制度集合大合集【员工管理】十篇
- 单位管理制度集粹汇编【人员管理篇】十篇
- 单位管理制度汇编大合集【人员管理】十篇
- 单位管理制度合并汇编员工管理篇
- 《网吧消防安全授》课件
- 单位管理制度范文大合集人力资源管理
- 单位管理制度呈现汇编人力资源管理篇十篇
- 60个常考的经济学原理和定律
- 《XL集团破产重整方案设计》
- 智慧金融合同施工承诺书
- 【7道期末】安徽省安庆市区2023-2024学年七年级上学期期末道德与法治试题(含解析)
- 2024年01月22094法理学期末试题答案
- 2024年1月国家开放大学法律事务专科《民法学(1)》期末纸质考试试题及答案
- 学校2024-2025学年教研工作计划
- 烟草执法课件教学课件
- 2024年安全文化建设实施方案
- 康复治疗技术历年真题单选题100道及答案
- 2024年领导干部和公务员法律法规应知应会知识考试题库
- 《建筑工程施工许可管理办法》2021年9月28日修订
评论
0/150
提交评论